Patents by Inventor Jung-Ming Chiu

Jung-Ming Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070045106
    Abstract: This invention relates to a method for fabricating solid-state alkaline polymer Zn-air battery, which consists of a zinc-gel anode, an air cathode electrode, and alkaline polymer electrolyte. The formulation of said zinc gel anode is similar to that of alkaline Zn—MnO2 battery. The zinc gel anode contains a mixture of electrolytic dendritic zinc powders, KOH electrolyte, gelling agent and small amount of additives. The air cathode electrode is made by carbon gas diffusion electrode, which comprises two layers, namely gas diffusion layer and active layer. The active layer on the electrolyte side uses a high surface area carbon for oxygen reduction reaction and potassium permanganate and MnO2 as catalysts for oxygen reduction. The diffusion layer on the air side has high PTFE content to prevent KOH electrolyte from weeping or climbing. Due to adequate amount of fresh air and oxygen supply, the air cathode electrode can run continuously.
    Type: Application
    Filed: July 24, 2006
    Publication date: March 1, 2007
    Inventors: Chun-Chen Yang, Sheng-Jen Lin, Chi-Neng Huang, Jung-Ming Chiu
  • Patent number: 6858670
    Abstract: A method for preparing a composite alkaline solid polymer electrolyte from polyvinyl alcohol (PVA) polymer, potassium hydroxide and water. The polymer electrolyte is reinforced with glass-fiber cloth to increase a mechanical strength, thermal stability and electrochemical stability. A glass fiber cloth matrix provides a stable interface between a cathode and an anode to reduce a short circuit problem when the battery discharges at high rate. The processes for polymer electrolyte are controlled by molecular weight of PVA polymer, the sequence of feeding in reactants, the weight proportions of reactants, the reaction time, the reaction temperature, and the drying conditions, i.e., under the specified conditions of relative humidity (RH), temperature and drying time. The resulting electrolyte exhibits ionic conductivity of 0.15 S/cm or better at room temperature and has high mechanical intensity and good electrochemical stability.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: February 22, 2005
    Assignee: Nan Ya Plastics Corporation
    Inventors: Chun-Chen Yang, Sheng-Jen Lin, Chi-Neng Huang, Jung-Ming Chiu, Kung-Chun Liaw
  • Publication number: 20030228522
    Abstract: This invention relates to a method for fabricating solid-state alkaline polymer Zn-air battery, which consists of a zinc-gel anode, an air cathode electrode, and alkaline polymer electrolyte. The formulation of said zinc gel anode is similar to that of alkaline Zn—MnO2 battery. The zinc gel anode contains a mixture of electrolytic dendritic zinc powders, KOH electrolyte, gelling agent and small amount of additives. The air cathode electrode is made by carbon gas diffusion electrode, which comprises two layers, namely gas diffusion layer and active layer. The active layer on the electrolyte side uses a high surface area carbon for oxygen reduction reaction and potassium permanganate and MnO2 as catalysts for oxygen reduction. The diffusion layer on the air side has high PTFE content to prevent KOH electrolyte from weeping or climbing. Due to adequate amount of fresh air and oxygen supply, the air cathode electrode can run continuously.
    Type: Application
    Filed: August 16, 2002
    Publication date: December 11, 2003
    Applicant: Ming-Chi Institute of Technology
    Inventors: Chun-Chen Yang, Sheng-Jen Lin, Chi-Neng Huang, Jung-Ming Chiu
  • Publication number: 20030139527
    Abstract: A method for preparing a composite alkaline solid polymer electrolyte from polyvinyl alcohol (PVA) polymer, potassium hydroxide and water is disclosed. Said polymer electrolyte is reinforced with glass-fiber cloth to increase its mechanical strength, thermal stability and electrochemical stability. The glass fiber cloth matrix provides a stable interface between the cathode and the anode to reduce the short circuit problem when the battery discharges at high rate. The processes for polymer electrolyte are controlled by molecular weight of PVA polymer, the sequence of feeding in reactants, the weight proportions of reactants, the reaction time, the reaction temperature, and the drying conditions, i.e. under the specified conditions of relative humidity (RH), temperature and drying time. The resulting electrolyte exhibits ionic conductivity of 0.15 S/cm or better at room temperature and has high mechanical intensity and good electrochemical stability.
    Type: Application
    Filed: July 26, 2002
    Publication date: July 24, 2003
    Applicant: Ming-Chi Institute of Technology
    Inventors: Chun-Chen Yang, Sheng-Jen Lin, Chi-Neng Huang, Jung-Ming Chiu, Kung-Chun Liaw