Patents by Inventor Jung Whan JUNG

Jung Whan JUNG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10361339
    Abstract: A light emitting device and a manufacturing method therefor are disclosed. The light emitting device comprises: a patterned sapphire substrate (PSS) including a plurality of concave parts and protruding parts on the upper surface thereof; a buffer layer including a concave part buffer layer, which is positioned on the concave part, and a protruding part buffer layer, which is positioned on the side surface of the protruding part and dispersed and arranged in a plurality of island shapes; a lower nitride layer positioned on the buffer layer and the PSS and covering the protruding part; a void positioned on an interface between the side surface of the protruding part and the lower nitride layer; a first conductive type semiconductor layer positioned on the lower nitride layer; a second conductive type semiconductor layer positioned on the first conductive type semiconductor layer; and an active layer interposed between the first and second conductive type semiconductor layers.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: July 23, 2019
    Assignee: SEOUL VIOSYS CO., LTD.
    Inventors: Jung Whan Jung, Kyung Hae Kim, Woo Chul Kwak, Sam Seok Jang
  • Patent number: 10109767
    Abstract: A light emitting diode includes: an n-type nitride semiconductor layer; an active layer over the n-type nitride semiconductor layer; and a p-type nitride semiconductor layer over the active layer. The n-type nitride semiconductor layer includes: an n-type nitride layer; a first intermediate layer over the n-type nitride layer; an n-type modulation-doped layer over the first intermediate layer. The light emitting diodes includes a second intermediate layer over the n-type modulation-doped layer. The second intermediate layer includes a sub-layer having a higher n-type doping concentration that an n-type doping concentration of the n-type modulation-doped layer.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: October 23, 2018
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Kyung Hae Kim, Jung Whan Jung
  • Patent number: 9966497
    Abstract: A method of fabricating a nonpolar gallium nitride-based semiconductor layer is provided. The method is a method of fabricating a nonpolar gallium nitride layer using metal organic chemical vapor deposition, and includes disposing a gallium nitride substrate with an m-plane growth surface within a chamber, raising a substrate temperature to a GaN growth temperature by heating the substrate, and growing a gallium nitride layer on the gallium nitride substrate by supplying a Ga source gas, an N source gas, and an ambient gas into the chamber at the growth temperature. The supplied ambient gas contains N2 and does not contain H2.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: May 8, 2018
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Seung Kyu Choi, Chae Hon Kim, Jung Whan Jung
  • Publication number: 20180047871
    Abstract: A light emitting device and a manufacturing method therefor are disclosed. The light emitting device comprises: a patterned sapphire substrate (PSS) including a plurality of concave parts and protruding parts on the upper surface thereof; a buffer layer including a concave part buffer layer, which is positioned on the concave part, and a protruding part buffer layer, which is positioned on the side surface of the protruding part and dispersed and arranged in a plurality of island shapes; a lower nitride layer positioned on the buffer layer and the PSS and covering the protruding part; a void positioned on an interface between the side surface of the protruding part and the lower nitride layer; a first conductive type semiconductor layer positioned on the lower nitride layer; a second conductive type semiconductor layer positioned on the first conductive type semiconductor layer; and an active layer interposed between the first and second conductive type semiconductor layers.
    Type: Application
    Filed: November 12, 2015
    Publication date: February 15, 2018
    Inventors: Jung Whan Jung, Kyung Hae Kim, Woo chul Kwak, Sam Seok Jang
  • Patent number: 9853182
    Abstract: Disclosed herein is a light emitting diode (LED) including: a gallium nitride substrate; a gallium nitride-based first contact layer disposed on the gallium nitride substrate; a gallium nitride-based second contact layer; an active layer having a multi-quantum well structure and disposed between the first and second contact layers; and a super-lattice layer having a multilayer structure and disposed between the first contact layer and the active layer. By employing the gallium nitride substrate, the crystallinity of the semiconductor layers can be improved, and in addition, by disposing the super-lattice layer between the first contact layer and the active layer, a crystal defect that may be generated in the active layer can be prevented.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: December 26, 2017
    Assignee: SEOUL VIOSYS CO., LTD.
    Inventors: Seung Kyu Choi, Chae Hon Kim, Jung Whan Jung, Ki Bum Nam, Kenji Shimoyama, Kaori Kurihara
  • Patent number: 9799800
    Abstract: A light emitting device is provided to include an n-type semiconductor layer, a p-type semiconductor layer, an active layer, and an electron blocking layer disposed between the p-type semiconductor layer and the active layer. The p-type semiconductor layer includes a hole injection layer, a p-type contact layer, and a hole transport layer. The hole transport layer includes a plurality of undoped layers and at least one intermediate doped layer disposed between the undoped layers. At least one of the undoped layers includes a zone in which hole concentration decreases with increasing distance from the hole injection layer or the p-type contact layer, and the intermediate doped layer is disposed to be at least partially overlapped with a region of the hole transport layer, the region having the hole concentration of 62% to 87% of the hole concentration of the p-type contact layer.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: October 24, 2017
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Sam Seok Jang, Woo Chul Kwak, Kyung Hae Kim, Jung Whan Jung, Yong Hyun Baek
  • Patent number: 9728404
    Abstract: Exemplary embodiments of the present invention provide a method of growing a nitride semiconductor layer including growing a gallium nitride-based defect dispersion suppressing layer on a gallium nitride substrate including non-defect regions and a defect region disposed between the non-defect regions, and growing a gallium nitride semiconductor layer on the defect dispersion suppressing layer.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: August 8, 2017
    Assignee: SEOUL VIOSYS CO., LTD.
    Inventors: Woo Chul Kwak, Seung Kyu Choi, Jae Hoon Song, Chae Hon Kim, Jung Whan Jung
  • Patent number: 9449815
    Abstract: Exemplary embodiments of the present invention relate to a method of growing gallium nitride-based semiconductor layers through metal-organic chemical vapor deposition, including disposing a substrate in a chamber, growing a first conductivity-type gallium nitride-based semiconductor layer on the substrate at a first chamber pressure, growing a gallium nitride-based active layer on the first conductivity-type gallium nitride-based semiconductor layer at a second chamber pressure higher than the first chamber pressure, and growing a second conductivity-type gallium nitride-based semiconductor layer on the active layer at a third chamber pressure lower than the second chamber pressure.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: September 20, 2016
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Seung Kyu Choi, Woo Chul Kwak, Chae Hon Kim, Jung Whan Jung
  • Patent number: 9287367
    Abstract: Disclosed are semiconductor devices and methods of manufacturing the same. The semiconductor device includes: a first conductive type semiconductor layer including a first lower conductive type semiconductor layer and a first upper conductive type semiconductor layer; a V-pit passing through at least one portion of the first upper conductive type semiconductor layer; a second conductive type semiconductor layer placed over the first conductive type semiconductor and filling the V-pit; and an active layer interposed between the first and second conductive type semiconductor layers with the V-pit passing through the active layer. The first upper conductive type semiconductor layer has a higher defect density than the first lower conductive type semiconductor layer and includes a V-pit generation layer comprising a starting point of the V-pit.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: March 15, 2016
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Woo Chul Kwak, Seung Kyu Choi, Chae Hon Kim, Jung Whan Jung, Yong Hyun Baek, Sam Seok Jang, Su Youn Hong, Mi Gyeong Jeong
  • Publication number: 20160056334
    Abstract: A light emitting device is provided to include an n-type semiconductor layer, a p-type semiconductor layer, an active layer, and an electron blocking layer disposed between the p-type semiconductor layer and the active layer. The p-type semiconductor layer includes a hole injection layer, a p-type contact layer, and a hole transport layer. The hole transport layer includes a plurality of undoped layers and at least one intermediate doped layer disposed between the undoped layers. At least one of the undoped layers includes a zone in which hole concentration decreases with increasing distance from the hole injection layer or the p-type contact layer, and the intermediate doped layer is disposed to be at least partially overlapped with a region of the hole transport layer, the region having the hole concentration of 62% to 87% of the hole concentration of the p-type contact layer.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 25, 2016
    Inventors: Sam Seok Jang, Woo Chul Kwak, Kyung Hae Kim, Jung Whan Jung, Yong Hyun Baek
  • Publication number: 20150380237
    Abstract: Exemplary embodiments of the present invention provide a method of growing a nitride semiconductor layer including growing a gallium nitride-based defect dispersion suppressing layer on a gallium nitride substrate including non-defect regions and a defect region disposed between the non-defect regions, and growing a gallium nitride semiconductor layer on the defect dispersion suppressing layer.
    Type: Application
    Filed: August 18, 2015
    Publication date: December 31, 2015
    Inventors: Woo Chul Kwak, Seung Kyu Choi, Jae Hoon Song, Chae Hon Kim, Jung Whan Jung
  • Publication number: 20150340562
    Abstract: Embodiments provide a method of growing a p-type nitride semiconductor, and a light emitting device fabricated using the same. The method of growing a p-type nitride semiconductor includes growing a p-type nitride semiconductor layer on a growth substrate by introducing a group III element source, a group V element source, and a p-type dopant into a chamber at a first temperature; and cooling the interior of the chamber from the first temperature to a second temperature, wherein the p-type dopant is introduced into the chamber for at least some part of the cooling of the interior of the chamber from the first temperature to the second temperature. According to the present disclosed technology, it is possible to prevent diffusion of the p-type dopant from a p-type nitride semiconductor layer into the chamber.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 26, 2015
    Inventors: Min Kyu Kim, Jung Whan Jung, Kyung Hae Kim, Woo Chul Kwak
  • Publication number: 20150311382
    Abstract: A light emitting diode includes: an n-type nitride semiconductor layer; an active layer over the n-type nitride semiconductor layer; and a p-type nitride semiconductor layer over the active layer. The n-type nitride semiconductor layer includes: an n-type nitride layer; a first intermediate layer over the n-type nitride layer; an n-type modulation-doped layer over the first intermediate layer. The light emitting diodes includes a second intermediate layer over the n-type modulation-doped layer. The second intermediate layer includes a sub-layer having a higher n-type doping concentration that an n-type doping concentration of the n-type modulation-doped layer.
    Type: Application
    Filed: January 16, 2015
    Publication date: October 29, 2015
    Inventors: Kyung Hae Kim, Jung Whan Jung
  • Publication number: 20150270435
    Abstract: A method of fabricating a nonpolar gallium nitride-based semiconductor layer is provided. The method is a method of fabricating a nonpolar gallium nitride layer using metal organic chemical vapor deposition, and includes disposing a gallium nitride substrate with an m-plane growth surface within a chamber, raising a substrate temperature to a GaN growth temperature by heating the substrate, and growing a gallium nitride layer on the gallium nitride substrate by supplying a Ga source gas, an N source gas, and an ambient gas into the chamber at the growth temperature. The supplied ambient gas contains N2 and does not contain H2.
    Type: Application
    Filed: May 8, 2015
    Publication date: September 24, 2015
    Inventors: Seung Kyu Choi, Chae Hon Kim, Jung Whan Jung
  • Patent number: 9142622
    Abstract: Exemplary embodiments of the present invention provide a method of growing a nitride semiconductor layer including growing a gallium nitride-based defect dispersion suppressing layer on a gallium nitride substrate including non-defect regions and a defect region disposed between the non-defect regions, and growing a gallium nitride semiconductor layer on the defect dispersion suppressing layer.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: September 22, 2015
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Woo Chul Kwak, Seung Kyu Choi, Jae Hoon Song, Chae Hon Kim, Jung Whan Jung
  • Patent number: 9076896
    Abstract: A method of fabricating a nonpolar gallium nitride-based semiconductor layer is provided. The method is a method of fabricating a nonpolar gallium nitride layer using metal organic chemical vapor deposition, and includes disposing a gallium nitride substrate with an m-plane growth surface within a chamber, raising a substrate temperature to a GaN growth temperature by heating the substrate, and growing a gallium nitride layer on the gallium nitride substrate by supplying a Ga source gas, an N source gas, and an ambient gas into the chamber at the growth temperature. The supplied ambient gas contains N2 and does not contain H2.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: July 7, 2015
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Seung Kyu Choi, Chae Hon Kim, Jung Whan Jung
  • Publication number: 20150115223
    Abstract: Disclosed are semiconductor devices and methods of manufacturing the same. The semiconductor device includes: a first conductive type semiconductor layer including a first lower conductive type semiconductor layer and a first upper conductive type semiconductor layer; a V-pit passing through at least one portion of the first upper conductive type semiconductor layer; a second conductive type semiconductor layer placed over the first conductive type semiconductor and filling the V-pit; and an active layer interposed between the first and second conductive type semiconductor layers with the V-pit passing through the active layer. The first upper conductive type semiconductor layer has a higher defect density than the first lower conductive type semiconductor layer and includes a V-pit generation layer comprising a starting point of the V-pit.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Woo Chul Kwak, Seung Kyu Choi, Chae Hon Kim, Jung Whan Jung, Yong Hyun Baek, Sam Seok Jang, Su Youn Hong, Mi Gyeong Jeong
  • Publication number: 20150091047
    Abstract: Disclosed are a method of growing a nitride semiconductor, a method of manufacturing a template for semiconductor fabrication and a method of manufacturing a semiconductor light emitting device using the same. The method of manufacturing a semiconductor light emitting device includes: preparing a growth substrate having a defect aggregation region; growing a first nitride semiconductor layer over the growth substrate; growing a second nitride semiconductor layer over the first nitride semiconductor layer; growing a third nitride semiconductor layer over the second nitride semiconductor layer; growing an active layer over the third nitride semiconductor layer; and forming a second conductive type semiconductor layer over the active layer. Accordingly, semiconductor layers grown on the template can have excellent crystallinity.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Seung Kyu Choi, Woo Chul Kwak, Chae Hon Kim, Jung Whan Jung, Sam Seok Jang
  • Publication number: 20140361247
    Abstract: Disclosed herein is a light emitting diode (LED) including: a gallium nitride substrate; a gallium nitride-based first contact layer disposed on the gallium nitride substrate; a gallium nitride-based second contact layer; an active layer having a multi-quantum well structure and disposed between the first and second contact layers; and a super-lattice layer having a multilayer structure and disposed between the first contact layer and the active layer. By employing the gallium nitride substrate, the crystallinity of the semiconductor layers can be improved, and in addition, by disposing the super-lattice layer between the first contact layer and the active layer, a crystal defect that may be generated in the active layer can be prevented.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Applicants: SEOUL VIOSYS CO., LTD., MITSUBISHI CHEMICAL CORPORATION
    Inventors: Seung Kyu CHOI, Chae Hon Kim, Jung Whan Jung, Ki Bum Nam, Kenji Shimoyama, Kaori Kurihara
  • Publication number: 20140162437
    Abstract: Exemplary embodiments of the present invention relate to a method of growing gallium nitride-based semiconductor layers through metal-organic chemical vapor deposition, including disposing a substrate in a chamber, growing a first conductivity-type gallium nitride-based semiconductor layer on the substrate at a first chamber pressure, growing a gallium nitride-based active layer on the first conductivity-type gallium nitride-based semiconductor layer at a second chamber pressure higher than the first chamber pressure, and growing a second conductivity-type gallium nitride-based semiconductor layer on the active layer at a third chamber pressure lower than the second chamber pressure.
    Type: Application
    Filed: October 17, 2013
    Publication date: June 12, 2014
    Applicant: SEOUL VIOSYS CO., LTD.
    Inventors: Seung Kyu CHOI, Woo Chul KWAK, Chae Hon KIM, Jung Whan JUNG