Patents by Inventor Jung Wu Chien

Jung Wu Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9525081
    Abstract: A method of forming bifacial solar cell structure is described. The method comprises: performing boron diffusion on an upper surface of a semiconductor substrate to form a P+ region and a boron silicon glass (BSG) layer on the P+ region; stripping the BSG layer to expose the P+ region and stripping a blocking layer on a lower surface of the semiconductor substrate simultaneously; forming a first anti-reflection coating layer on the P+ region; forming sacrifice film on the first anti-reflection coating layer; performing phosphorus diffusion on the lower surface to form an N+ region and a phosphorus silicon glass (PSG) layer on the N+ region; stripping the PSG layer on the N+ region to expose the N+ region and stripping the sacrifice film on the first anti-reflection coating layer simultaneously; and forming a second anti-reflection coating layer on the N+ region.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: December 20, 2016
    Assignee: INVENTEC SOLAR ENERGY CORPORATION
    Inventors: Yu-Hsiang Huang, Yu Ta Cheng, Chuan Chi Chen, Chia-Lung Lin, Chin-Pao Taso, Jung-Wu Chien, Haw Yen
  • Publication number: 20150114459
    Abstract: An electrode structure is disclosed in the present invention and includes a first conductive electrode and a second conductive electrode. The first conductive electrode includes a first busbar electrode member and a first finger electrode member. A portion of the first busbar electrode member above a first diffusion pattern is electrically contacted with the first diffusion pattern by first contact points. A portion of the second busbar electrode above a second diffusion pattern is electrically contacted with the second diffusion pattern by second contact points. The first finger electrode and the second finger electrode are respectively and electrically contacted with the first diffusion pattern and the second diffusion pattern.
    Type: Application
    Filed: January 22, 2014
    Publication date: April 30, 2015
    Applicant: INVENTEC SOLAR ENERGY CORPORATION.
    Inventors: Jung-Wu Chien, Chia-Lung Lin, Chuan Chi Chen
  • Publication number: 20150013742
    Abstract: A back contact solar cell includes a first main busbar electrode, a second main busbar electrode, a plurality of first finger electrodes and a plurality of second finger electrodes, all of which are disposed on a back surface of the back contact solar cell and extending along a first direction. The back contact solar cell further includes a first sub-busbar electrode and a second sub-busbar electrode, which are extending along a second direction. The first finger electrodes are electrically connected to an N-type doped region, and the second finger electrodes are electrically connected to a P-type doped region. The first sub-busbar electrode is electrically connected to the first main busbar electrode and the first finger electrodes. The second sub-busbar electrode is electrically connected to the second main busbar electrode and the second finger electrodes.
    Type: Application
    Filed: October 22, 2013
    Publication date: January 15, 2015
    Applicant: Inventec Solar Energy Corporation
    Inventors: Chia-Lung LIN, Yu-Ta CHENG, Chuan-Chi CHEN, Jung-Wu CHIEN
  • Publication number: 20130319516
    Abstract: A method for manufacturing a front electrode of a solar cell and a solar cell device manufactured by the same method are provided. The method includes steps of providing a substrate; performing a first screen printing process to form at least one first electrode over the substrate; and performing a second screen printing process to form at least one row of a second electrode structure over the substrate. The first electrode is formed with a strip body and a plurality of salients connected to the strip body. The second electrode structure has a plurality of sections of finger electrodes, wherein first ends of the finger electrodes directly contact with first surfaces of the salients of the first electrode, respectively, without extending to the strip body.
    Type: Application
    Filed: October 2, 2012
    Publication date: December 5, 2013
    Applicant: Inventec Solar Energy Corporation
    Inventors: Jung-Wu Chien, Chuan-Chi Chen
  • Patent number: 7871884
    Abstract: A method for manufacturing the DRAM includes first providing a substrate where patterned first mask layer and deep trenches exposed by the patterned first mask layer are formed. Deep trench capacitors are formed in the deep trenches and each of the deep trench capacitors includes a lower electrode, an upper electrode, and a capacitor dielectric layer. A device isolation layer is formed in the first mask layer and the substrate for defining an active region. The first mask layer is removed for exposing the substrate, and a semiconductor layer is formed on the exposed substrate. The semiconductor layer and the substrate are patterned for forming trenches, and the bottom of the trench is adjacent to the upper electrodes of the trench capacitor. Gate structures filling into the trenches are formed on the substrate. A doped region is formed in the substrate adjacent to a side of the gate structure.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: January 18, 2011
    Assignee: ProMOS Technologies Inc.
    Inventor: Jung-Wu Chien
  • Patent number: 7582524
    Abstract: A method for preparing a memory structure comprises the steps of forming a plurality of line-shaped blocks on a dielectric structure of a substrate, and forming a first etching mask exposing a sidewall of the line-shaped blocks. A portion of the line-shaped blocks is removed incorporating the first etching mask to reduce the width of the line-shaped blocks to form a second etching mask including a plurality of first blocks and second blocks arranged in an interlaced manner. Subsequently, a portion of the dielectric structure not covered by the second etching mask is removed to form a plurality of openings in the dielectric structure, and a conductive plug is formed in each of the openings. The plurality of openings includes first openings positioned between the first blocks and second openings positioned between the second blocks, and the first opening and the second opening extend to opposite sides of an active area.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 1, 2009
    Assignee: Promos Technologies Inc.
    Inventors: Jung Wu Chien, Chia Shun Hsiao
  • Patent number: 7538018
    Abstract: A method for fabricating a gate structure is provided. A pad oxide layer, a pad conductive layer and a dielectric layer are sequentially formed over a substrate. A portion of the dielectric layer is removed to form an opening exposing a portion of the pad conductive layer. A liner conductive layer is formed to cover the dielectric layer and the pad conductive layer. A portion of the liner conductive layer and a portion of the pad conductive layer are removed to expose a surface of the pad oxide layer to form a conductive spacer. The pad oxide layer is removed and a gate oxide layer is formed over the substrate. A first gate conductive layer and a second gate conductive layer are sequentially formed over the gate oxide layer. A portion of the gate oxide layer is removed and a cap layer to fill the opening.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: May 26, 2009
    Assignee: ProMOS Technologies Inc.
    Inventor: Jung-Wu Chien
  • Patent number: 7479452
    Abstract: A method of forming cell bitline contact plugs is disclosed in the present invention. After providing a semiconductor substrate with a first region and a second region, cell bitline contacts are formed at the first region. After forming bitline pattern openings at the second region, poly spacers are formed on sidewalls of the cell bitline contacts and the bitline pattern openings. A substrate contact and a gate contact are then formed within the openings at the second region. After forming a trench around each of the substrate contact and the gate contact by performing an etching process, cell-bitline contact plugs, a substrate contact plug, and a gate contact plug are formed.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: January 20, 2009
    Assignee: Promos Technologies Inc.
    Inventor: Jung-Wu Chien
  • Publication number: 20090004793
    Abstract: A method of forming cell bitline contact plugs is disclosed in the present invention. After providing a semiconductor substrate with a first region and a second region, cell bitline contacts are formed at the first region. After forming bitline pattern openings at the second region, poly spacers are formed on sidewalls of the cell bitline contacts and the bitline pattern openings. A substrate contact and a gate contact are then formed within the openings at the second region. After forming a trench around each of the substrate contact and the gate contact by performing an etching process, cell-bitline contact plugs, a substrate contact plug, and a gate contact plug are formed.
    Type: Application
    Filed: August 28, 2008
    Publication date: January 1, 2009
    Inventor: Jung-Wu CHIEN
  • Publication number: 20080305592
    Abstract: A method for manufacturing the DRAM includes first providing a substrate where patterned first mask layer and deep trenches exposed by the patterned first mask layer are formed. Deep trench capacitors are formed in the deep trenches and each of the deep trench capacitors includes a lower electrode, an upper electrode, and a capacitor dielectric layer. A device isolation layer is formed in the first mask layer and the substrate for defining an active region. The first mask layer is removed for exposing the substrate, and a semiconductor layer is formed on the exposed substrate. The semiconductor layer and the substrate are patterned for forming trenches, and the bottom of the trench is adjacent to the upper electrodes of the trench capacitor. Gate structures filling into the trenches are formed on the substrate. A doped region is formed in the substrate adjacent to a side of the gate structure.
    Type: Application
    Filed: August 20, 2008
    Publication date: December 11, 2008
    Applicant: ProMOS Technologies Inc.
    Inventor: Jung-Wu Chien
  • Publication number: 20080268646
    Abstract: A reduced area dynamic random access memory (DRAM) cell and method for fabricating the same wherein the cell occupies an area smaller than one photolithography pitch by two photolithography pitches through the formation of sidewall spacers along a first pattern to define a first portion of the active region of the memory cell and a second orthogonally oriented pattern to define a second portion of the active region of the memory cell thereby creating a ladder shaped active region for a column of the memory cells.
    Type: Application
    Filed: July 7, 2008
    Publication date: October 30, 2008
    Applicant: ProMOS Technologies PET.LTD.
    Inventors: Douglas Blaine Butler, Chia-Shun Hsiao, Jung-Wu Chien, Chih-Hsun Chu
  • Patent number: 7435645
    Abstract: A dynamic random access memory (DRAM) includes a substrate, an active device and a deep trench capacitor. A trench and a deep trench are formed in the substrate. The active device is disposed on the substrate. The active device includes a gate structure and a doped region. The gate structure is disposed on the substrate and fills the trench. The doped region is disposed in the substrate at a first side of the gate structure. The deep trench capacitor is disposed in the deep trench of the substrate at a second side of the gate, and the second side is opposite to the first side. In addition, an upper electrode of the deep trench capacitor is adjacent to the bottom of the trench.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: October 14, 2008
    Assignee: ProMOS Technologies, Inc.
    Inventor: Jung-Wu Chien
  • Publication number: 20080138970
    Abstract: A method for fabricating a gate structure is provided. A pad oxide layer, a pad conductive layer and a dielectric layer are sequentially formed over a substrate. A portion of the dielectric layer is removed to form an opening exposing a portion of the pad conductive layer. A liner conductive layer is formed to cover the dielectric layer and the pad conductive layer. A portion of the liner conductive layer and a portion of the pad conductive layer are removed to expose a surface of the pad oxide layer to form a conductive spacer. The pad oxide layer is removed and a gate oxide layer is formed over the substrate. A first gate conductive layer and a second gate conductive layer are sequentially formed over the gate oxide layer. A portion of the gate oxide layer is removed and a cap layer to fill the opening.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 12, 2008
    Applicant: PROMOS TECHNOLOGIES INC.
    Inventor: Jung-Wu Chien
  • Publication number: 20080135943
    Abstract: A method for fabricating a gate structure is provided. A pad oxide layer, a pad conductive layer and a dielectric layer are sequentially formed over a substrate. A portion of the dielectric layer is removed to form an opening exposing a portion of the pad conductive layer. A liner conductive layer is formed to cover the dielectric layer and the pad conductive layer. A portion of the liner conductive layer and a portion of the pad conductive layer are removed to expose a surface of the pad oxide layer to form a conductive spacer. The pad oxide layer is removed and a gate oxide layer is formed over the substrate. A first gate conductive layer and a second gate conductive layer are sequentially formed over the gate oxide layer. A portion of the gate oxide layer is removed and a cap layer to fill the opening.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 12, 2008
    Applicant: PROMOS TECHNOLOGIES INC.
    Inventor: Jung-Wu Chien
  • Patent number: 7348622
    Abstract: A memory charge storage node (120.1, 120.2, 120.3) is at least partially located in a trench (124). The memory comprises a transistor including a source/drain region (170) present at a first side (124.1) but not a second side (124.2) of the trench. Before forming conductive material (120.3) providing at least a portion of the charge storage node, a blocking feature (704) is formed adjacent to the second side (124.2) to block the conductive material (120.3). The blocking feature can be dielectric left in the final structure, or can be a sacrificial feature which is removed after the conductive material deposition to make room for dielectric. The blocking features for multiple trenches in a memory array can be patterned using a mask (710) comprising a plurality of straight strips each of which runs through the memory array in the row direction. The charge storage node has a protrusion (120.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 25, 2008
    Assignee: ProMOS Technologies Inc.
    Inventors: Chao-Hsi Chung, Jung-Wu Chien
  • Publication number: 20080050878
    Abstract: A method for preparing a memory structure comprises the steps of forming a plurality of line-shaped blocks on a dielectric structure of a substrate, and forming a first etching mask exposing a sidewall of the line-shaped blocks. A portion of the line-shaped blocks is removed incorporating the first etching mask to reduce the width of the line-shaped blocks to form a second etching mask including a plurality of first blocks and second blocks arranged in an interlaced manner. Subsequently, a portion of the dielectric structure not covered by the second etching mask is removed to form a plurality of openings in the dielectric structure, and a conductive plug is formed in each of the openings. The plurality of openings includes first openings positioned between the first blocks and second openings positioned between the second blocks, and the first opening and the second opening extend to opposite sides of an active area.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 28, 2008
    Applicant: PROMOS TECHNOLOGIES INC.
    Inventors: Jung Wu Chien, Chia Shun Hsiao
  • Publication number: 20080044970
    Abstract: A memory structure comprises a semiconductor substrate, an active are positioned in the semiconductor substrate, a plurality of doped regions positioned in the semiconductor substrate, a first conductive plug connecting a bit line and one of the doped regions and a second conductive plug connecting a capacitor and another one of doped regions. The first conductive plug includes a first block positioned in the active area and a second block positioned at a first side of the active area, and the bit line electrically connects the second block. The second conductive plug includes a third block positioned in the active area and a fourth block positioned at a second side of the active area, and the capacitor electrically connects the fourth block. The first side of the active area is opposite to the second side of the active area.
    Type: Application
    Filed: September 7, 2006
    Publication date: February 21, 2008
    Applicant: PROMOS TECHNOLOGIES INC.
    Inventors: Jung Wu Chien, Chia Shun Hsiao
  • Patent number: 7232719
    Abstract: A memory charge storage node (120.1, 120.2, 120.3) is at least partially located in a trench (124). The memory comprises a transistor including a source/drain region (170) present at a first side (124.1) but not a second side (124.2) of the trench. Before forming conductive material (120.3) providing at least a portion of the charge storage node, a blocking feature (704) is formed adjacent to the second side (124.2) to block the conductive material (120.3). The blocking feature can be dielectric left in the final structure, or can be a sacrificial feature which is removed after the conductive material deposition to make room for dielectric. The blocking features for multiple trenches in a memory array can be patterned using a mask (710) comprising a plurality of straight strips each of which runs through the memory array in the row direction. The charge storage node has a protrusion (120.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: June 19, 2007
    Assignee: ProMOS Technologies Inc.
    Inventors: Chao-Hsi Chung, Jung-Wu Chien
  • Publication number: 20070085152
    Abstract: A reduced area dynamic random access memory (DRAM) cell and method for fabricating the same wherein the cell occupies an area smaller than one photolithography pitch by two photolithography pitches through the formation of sidewall spacers along a first pattern to define a first portion of the active region of the memory cell and a second orthogonally oriented pattern to define a second portion of the active region of the memory cell thereby creating a ladder shaped active region for a column of the memory cells.
    Type: Application
    Filed: October 14, 2005
    Publication date: April 19, 2007
    Inventors: Douglas Butler, Chia-Shun Hsiao, Jung-Wu Chien, Chih-Hsun Chu
  • Publication number: 20070082444
    Abstract: A dynamic random access memory (DRAM) includes a substrate, an active device and a deep trench capacitor. A trench and a deep trench are formed in the substrate. The active device is disposed on the substrate. The active device includes a gate structure and a doped region. The gate structure is disposed on the substrate and fills the trench. The doped region is disposed in the substrate at a first side of the gate structure. The deep trench capacitor is disposed in the deep trench of the substrate at a second side of the gate, and the second side is opposite to the first side. In addition, an upper electrode of the deep trench capacitor is adjacent to the bottom of the trench.
    Type: Application
    Filed: November 9, 2005
    Publication date: April 12, 2007
    Inventor: Jung-Wu Chien