Patents by Inventor Junghoon Yeom

Junghoon Yeom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11857959
    Abstract: The disclosure relates to microchemical (or microfluidic) apparatus as well as related methods for making the same. The methods generally include partial sintering of sintering powder (e.g., binderless or otherwise free-flowing sintering powder) that encloses a fugitive phase material having a shape corresponding to a desired cavity structure in the formed apparatus. Partial sintering removes the fugitive phase and produces a porous compact, which can then be machined if desired and then further fully sintered to form the final apparatus. The process can produce apparatus with small, controllable cavities shaped as desired for various microchemical or microfluidic unit operations, with a generally smooth interior cavity finish, and with materials (e.g., ceramics) able to withstand harsh environments for such unit operations.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: January 2, 2024
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Patrick Kwon, Junghoon Yeom
  • Patent number: 11046579
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: June 29, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Publication number: 20210178387
    Abstract: The disclosure relates to microchemical (or microfluidic) apparatus as well as related methods for making the same. The methods generally include partial sintering of sintering powder (e.g., binderless or otherwise free-flowing sintering powder) that encloses a fugitive phase material having a shape corresponding to a desired cavity structure in the formed apparatus. Partial sintering removes the fugitive phase and produces a porous compact, which can then be machined if desired and then further fully sintered to form the final apparatus. The process can produce apparatus with small, controllable cavities shaped as desired for various microchemical or microfluidic unit operations, with a generally smooth interior cavity finish, and with materials (e.g., ceramics) able to withstand harsh environments for such unit operations.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Patrick Kwon, Junghoon Yeom
  • Patent number: 10933414
    Abstract: The disclosure relates to microchemical (or microfluidic) apparatus as well as related methods for making the same. The methods generally include partial sintering of sintering powder (e.g., binderless or otherwise free-flowing sintering powder) that encloses a fugitive phase material having a shape corresponding to a desired cavity structure in the formed apparatus. Partial sintering removes the fugitive phase and produces a porous compact, which can then be machined if desired and then further fully sintered to form the final apparatus. The process can produce apparatus with small, controllable cavities shaped as desired for various microchemical or microfluidic unit operations, with a generally smooth interior cavity finish, and with materials (e.g., ceramics) able to withstand harsh environments for such unit operations.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: March 2, 2021
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Patrick Kwon, Junghoon Yeom
  • Publication number: 20200109049
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Patent number: 10501316
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: December 10, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Publication number: 20180237294
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 23, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Publication number: 20180056292
    Abstract: The disclosure relates to microchemical (or microfluidic) apparatus as well as related methods for making the same. The methods generally include partial sintering of sintering powder (e.g., binderless or otherwise free-flowing sintering powder) that encloses a fugitive phase material having a shape corresponding to a desired cavity structure in the formed apparatus. Partial sintering removes the fugitive phase and produces a porous compact, which can then be machined if desired and then further fully sintered to form the final apparatus. The process can produce apparatus with small, controllable cavities shaped as desired for various microchemical or microfluidic unit operations, with a generally smooth interior cavity finish, and with materials (e.g., ceramics) able to withstand harsh environments for such unit operations.
    Type: Application
    Filed: August 24, 2017
    Publication date: March 1, 2018
    Inventors: Patrick Kwon, Junghoon Yeom
  • Patent number: 9561488
    Abstract: A zinc titanate reactive adsorbent comprising multiphase, polycrystalline nanofibers comprising ZnTiO3, ZnO, TiO2, and Zn2TiO4.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: February 7, 2017
    Assignee: The Board of Trustees of The University of Illinois
    Inventors: Prashant Jain, Mayank Behl, Mark Shannon, Junghoon Yeom
  • Publication number: 20160101408
    Abstract: A zinc titanate reactive adsorbent comprising multiphase, polycrystalline nanofibers comprising ZnTiO3, ZnO, TiO2, and Zn2TiO4.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 14, 2016
    Inventors: Prashant Jain, Mayank Behl, Mark Shannon, Junghoon Yeom
  • Patent number: 9248428
    Abstract: A zinc titanate reactive adsorbent comprising multiphase, polycrystalline nanofibers comprising ZnTiO3, ZnO, TiO2, and Zn2TiO4.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: February 2, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Prashant Jain, Mayank Behl, Mark Shannon, Junghoon Yeom
  • Publication number: 20140127106
    Abstract: A zinc titanate reactive adsorbent comprising multiphase, polycrystalline nanofibers comprising ZnTiO3, ZnO, TiO2, and Zn2TiO4.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Inventors: Prashant Jain, Mayank Behl, Mark Shannon(deceased), Junghoon Yeom
  • Patent number: 8480942
    Abstract: A method of forming a patterned layer of a material on a substrate includes forming a layer of the material on a stamp, and contacting the stamp with a first substrate comprising a pattern of protruding and recessed features to bring a first portion of the layer into conformal contact with the protruding features. The stamp is then removed from the first substrate. The first portion of the layer remains in conformal contact with the protruding features, and a second portion of the layer opposite the recessed features is removed with the stamp. Accordingly, a patterned layer is formed on the stamp inverse to the pattern on the first substrate. The method may further include transferring the patterned layer on the stamp to a second substrate.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 9, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Mark A Shannon, Junghoon Yeom
  • Publication number: 20110210468
    Abstract: A method of forming a patterned layer of a material on a substrate includes forming a layer of the material on a stamp, and contacting the stamp with a first substrate comprising a pattern of protruding and recessed features to bring a first portion of the layer into conformal contact with the protruding features. The stamp is then removed from the first substrate. The first portion of the layer remains in conformal contact with the protruding features, and a second portion of the layer opposite the recessed features is removed with the stamp. Accordingly, a patterned layer is formed on the stamp inverse to the pattern on the first substrate. The method may further include transferring the patterned layer on the stamp to a second substrate.
    Type: Application
    Filed: January 27, 2011
    Publication date: September 1, 2011
    Inventors: Mark A. Shannon, Junghoon Yeom