Patents by Inventor Jun-Ho Chung

Jun-Ho Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121809
    Abstract: A method of a first terminal may include: identifying first RB set(s) to be used for SL communication among consecutive RB sets through an LBT procedure; identifying a first subchannel group included in the first RB set(s) and a second subchannel group including a first PRB in the first RB set(s), the first PRB being not included in the first subchannel group; configuring the first PRB within the second subchannel group as an SL communication resource; and transmitting, to a second terminal, control information indicating that the first PRB is configured as the SL communication resource.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 11, 2024
    Inventors: Jun Hyeong KIM, Go San NOH, Il Gyu KIM, Man Ho PARK, Nak Woon SUNG, Jae Su SONG, Nam Suk LEE, Hee Sang CHUNG, Min Suk CHOI
  • Publication number: 20240097104
    Abstract: The technology and implementations disclosed in this patent document generally relate to a lithium secondary battery including: a first unit cell including a first anode including a 1-1 anode mixture layer and a 1-2 anode mixture layer on the 1-1 anode mixture layer, and a second unit cell including a second anode including a 2-1 anode mixture layer and a 2-2 anode mixture layer on the 2-1 anode mixture layer, wherein a weight ratio of the silicon-based active material in the 1-2 anode mixture layer is greater than a weight ratio of the silicon-based active material in the 1-1 anode mixture layer, and a weight ratio of the silicon-based active material in the 2-2 anode mixture layer is less than or equal to a weight ratio of the silicon-based active material in the 2-1 anode mixture layer.
    Type: Application
    Filed: August 2, 2023
    Publication date: March 21, 2024
    Inventors: Jun Hee HAN, Moon Sung KIM, Hyo Mi KIM, Sang Baek RYU, Da Hye PARK, Sang In BANG, Seung Hyun YOOK, Hwan Ho JANG, Da Bin CHUNG
  • Publication number: 20240099045
    Abstract: Provided are an electroluminescent device, a method of manufacturing the same, and a display device including the same, the electroluminescent device including a first electron auxiliary layer, a first light emitting layer, and a first electrode disposed on a first surface of a transparent electrode; and a second electron auxiliary layer, a second light emitting layer, and a second electrode disposed on a second surface of the transparent electrode, wherein the first electron auxiliary layer and the second electron auxiliary layer each include a plurality of zinc oxide nanoparticles, a ratio (t1/t0) of a thickness (t1) of the first electron auxiliary layer to a thickness (t0) of the transparent electrode and a ratio (t2/t0) of a thickness (t2) of the second electron auxiliary layer to the thickness (t0) of the transparent electrode are each in the range of about 0.1 to about 4.0.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 21, 2024
    Inventors: Heejae LEE, Tae Ho KIM, Jun-Mo YOO, Ilyoung LEE, Shin Ae JUN, Dae Young CHUNG, Moon Gyu HAN
  • Patent number: 11929495
    Abstract: In some implementations, the anode includes a current collector, a first anode mixture layer formed on at least one surface of the current collector, and a second anode mixture layer formed on the first anode mixture layer. The first anode mixture layer and the second anode mixture layer include a carbon-based active material, respectively. The first anode mixture layer includes a first binder, a first silicon-based active material, and a first conductive material. The second anode mixture layer includes a second binder, a second silicon-based active material, and a second conductive material. Contents of the first conductive material and the second conductive material are different from each other with respect to the total combined weight of the first anode mixture layer and the second anode mixture layer. Types of the first silicon-based active material and the second silicon-based active material are different from each other.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: March 12, 2024
    Assignee: SK ON CO., LTD.
    Inventors: Hyo Mi Kim, Moon Sung Kim, Sang Baek Ryu, Da Hye Park, Seung Hyun Yook, Hwan Ho Jang, Kwang Ho Jeong, Da Bin Chung, Jun Hee Han
  • Patent number: 11929491
    Abstract: An anode for a lithium secondary battery includes an anode current collector, and an anode active material layer formed on at least one surface of the anode current collector. The anode active material layer includes a carbon-based active material, a first silicon-based active material doped with magnesium and a second silicon-based active material not doped with magnesium. A content of the first silicon-based active material is in a range from 2 wt % to 20 wt % based on a total weight of the anode active material layer.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: March 12, 2024
    Assignee: SK ON CO., LTD.
    Inventors: Hwan Ho Jang, Moon Sung Kim, Hyo Mi Kim, Sang Baek Ryu, Da Hye Park, Seung Hyun Yook, Da Bin Chung, Jun Hee Han
  • Patent number: 11814483
    Abstract: Disclosed herein is a high thermal resistant polyolefin-based separator including a coating layer containing polyamic acid. Specifically, the separator includes a polyolefin-based substrate film, and a coating layer containing polyamic acid formed on one or both surfaces of the polyolefin-based substrate film, wherein the polyamic acid contains one or more functional groups selected from the group consisting of a sulfone group, a trifluoromethyl group, an alkyl group, and a phenyl ether group. Also, disclosed herein is an electrochemical battery having improved thermal stability by using the separator including a coating layer containing polyamic acid.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: November 14, 2023
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: In Sik Jeon, Jin Kyu Park, Tae Joon Park, Jun Ho Chung, Mok Yun Jin
  • Patent number: 11674196
    Abstract: A steel reinforcing bar contains 0.06 wt % to 0.11 wt % carbon, more than 0 and not more than 0.25 wt % silicon, 0.8 wt % or more and less than 2.0 wt % manganese, more than 0 and not more than 0.01 wt % phosphorus, more than 0 and not more than 0.01 wt % sulfur, 0.01 to 0.03 wt % aluminum, 0.50 to 1.00 wt % nickel, 0.027 to 0.125 wt % molybdenum, more than 0 and not more than 0.25 wt % chromium, more than 0 and not more than 0.28 wt % copper, more than 0 and not more than 0.01 wt % nitrogen, and the remainder being iron and unavoidable impurities. The reinforcing bar has a surface layer and a core. The surface layer has a hardened layer of tempered martensite, and the core has a mixed structure of bainite, ferrite and pearlite.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: June 13, 2023
    Assignee: Hyundai Steel Company
    Inventors: Jun Ho Chung, Tae Hyung Kim, Ju Sang Lee, Se Jin Kim, Kyoung Rok Lim
  • Patent number: 11643697
    Abstract: A method for manufacturing a high-strength steel bar can include the steps of: reheating a steel slab at a temperature ranging from 1000° C. to 1100° C., the steel slab including a certain amount of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), copper (Cu), nickel (Ni), molybdenum (Mo), aluminum (Al), vanadium (V), nitrogen (N), antimony (Sb), tin (Sn), and iron (Fe) and other inevitable impurities, The method can further include finish hot-rolling the reheated steel slab at a temperature of 850° C. to 1000° C., and cooling the hot-rolled steel to a martensite transformation start temperature (Ms (° C.)) through a tempcore process.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: May 9, 2023
    Assignee: Hyundai Steel Company
    Inventors: Jun Ho Chung, Won Hoe Kim, Jung Wook Park, Hyun Sub Kim
  • Publication number: 20220364194
    Abstract: Provided is an ultra-high-strength reinforcing bar and a method for manufacturing the same are disclosed. In an exemplary embodiment, the ultra-high-strength reinforcing bar includes an amount of 0.10 to 0.45 wt % carbon (C), an amount of 0.5 to 1.0 wt % silicon (Si), an amount of 0.40 to 1.80 wt % manganese (Mn), an amount of 0.10 to 1.0 wt % chromium (Cr), an amount greater than 0 and less than or equal to 0.2 wt % vanadium (V), an amount greater than 0 and less than or equal to 0.4 wt % copper (Cu), an amount greater than 0 and less than or equal to 0.5 wt % molybdenum (Mo), an amount of 0.015 to 0.070 wt % aluminum (Al), an amount greater than 0 and less than or equal to 0.25 wt % nickel (Ni), an amount greater than 0 and less than or equal to 0.1 wt % tin (Sn), an amount greater than 0 and less than or equal to 0.05 wt % phosphorus (P), an amount greater than 0 and less than or equal to 0.03 wt % sulfur (S), an amount of 0.005 to 0.
    Type: Application
    Filed: October 6, 2020
    Publication date: November 17, 2022
    Inventors: Jun Ho Chung, Ju Sang Lee, Rok Seok Kim, Chung Yeob Lee
  • Publication number: 20220316019
    Abstract: A section steel according to an exemplary embodiment of the present invention is characterized in that it includes an amount of 0.08 to 0.17% by weight of carbon (C), an amount of 0.50 to 1.60% by weight of manganese (Mn), an amount of 0.10 to 0.50% by weight of silicon (Si), an amount of 0.10 to 0.70% by weight of chromium (Cr), an amount greater than 0 and 0.5% by weight or less of copper (Cu), an amount of 0.30 to 0.70% by weight of molybdenum (Mo), an amount greater than 0 and 0.02% by weight or less of phosphorus (P), an amount greater than 0 and 0.01% by weight or less of sulfur (S), an amount greater than 0 and 0.012% by weight or less of nitrogen (N), an amount greater than 0 and 0.003% by weight or less of boron (B), an amount of 0.01 to 0.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 6, 2022
    Inventors: Jun Ho Chung, Hong Ki Jang
  • Publication number: 20220316039
    Abstract: Provided is a steel reinforcement including an amount of 0.07 to 0.43 wt % of carbon (C), an amount of 0.5 to 2.0 wt % of manganese (Mn), an amount of 0.05 to 0.5 wt % of silicon (Si), an amount greater than 0 and less than or equal to 0.5 wt % of chromium (Cr), an amount greater than 0 and less than or equal to 4.5 wt % of copper (Cu), an amount greater than 0 and less than or equal to 0.003 wt % of boron (B), an amount greater than 0 and less than or equal to 0.25 wt % of vanadium (V), an amount greater than 0 and less than or equal to 0.012 wt % of nitrogen (N), an amount greater than 0 and less than or equal to 0.03 wt % of phosphorus (P), an amount greater than 0 and less than or equal to 0.03 wt % of sulfur (S), an amount of 0.01 to 0.5 wt % of the sum of one or more of nickel (Ni), niobium (Nb) and titanium (Ti), the balance of iron (Fe), and other inevitable impurities. A final microstructure includes ferrite, bainite, pearlite, retained austenite, and precipitates comprising copper.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 6, 2022
    Inventors: Jun Ho Chung, Tae Hyung Kim
  • Patent number: 11447842
    Abstract: A method for manufacturing a high-strength steel bar can include the steps of: reheating a steel slab at a temperature ranging from 1000° C. to 1100° C., the steel slab including a certain amount of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), copper (Cu), nickel (Ni), molybdenum (Mo), aluminum (Al), vanadium (V), nitrogen (N), antimony (Sb), tin (Sn), and iron (Fe) and other inevitable impurities, The method can further include finish hot-rolling the reheated steel slab at a temperature of 850° C. to 1000° C., and cooling the hot-rolled steel to a martensite transformation start temperature (Ms (° C.)) through a tempcore process.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: September 20, 2022
    Assignee: Hyundai Steel Company
    Inventors: Jun Ho Chung, Won Hoe Kim, Jung Wook Park, Hyun Sub Kim
  • Publication number: 20210180146
    Abstract: A method for manufacturing a high-strength steel bar can include the steps of: reheating a steel slab at a temperature ranging from 1000° C. to 1100° C., the steel slab including a certain amount of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), copper (Cu), nickel (Ni), molybdenum (Mo), aluminum (Al), vanadium (V), nitrogen (N), antimony (Sb), tin (Sn), and iron (Fe) and other inevitable impurities, The method can further include finish hot-rolling the reheated steel slab at a temperature of 850° C. to 1000° C., and cooling the hot-rolled steel to a martensite transformation start temperature (Ms (° C.)) through a tempcore process.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 17, 2021
    Applicant: Hyundai Steel Company
    Inventors: Jun Ho Chung, Won Hoe Kim, Jung Wook Park, Hyun Sub Kim
  • Publication number: 20210036294
    Abstract: Disclosed herein is a high thermal resistant polyolefin-based separator including a coating layer containing polyamic acid. Specifically, the separator includes a polyolefin-based substrate film, and a coating layer containing polyamic acid formed on one or both surfaces of the polyolefin-based substrate film, wherein the polyamic acid contains one or more functional groups selected from the group consisting of a sulfone group, a trifluoromethyl group, an alkyl group, and a phenyl ether group. Also, disclosed herein is an electrochemical battery having improved thermal stability by using the separator including a coating layer containing polyamic acid.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: In Sik JEON, Jin Kyu PARK, Tae Joon PARK, Jun Ho CHUNG, Mok Yun JIN
  • Publication number: 20200347480
    Abstract: A steel reinforcing bar contains 0.06 wt % to 0.11 wt % carbon, more than 0 and not more than 0.25 wt % silicon, 0.8 wt % or more and less than 2.0 wt % manganese, more than 0 and not more than 0.01 wt % phosphorus, more than 0 and not more than 0.01 wt % sulfur, 0.01 to 0.03 wt % aluminum, 0.50 to 1.00 wt % nickel, 0.027 to 0.125 wt % molybdenum, more than 0 and not more than 0.25 wt % chromium, more than 0 and not more than 0.28 wt % copper, more than 0 and not more than 0.01 wt % nitrogen, and the remainder being iron and unavoidable impurities. The reinforcing bar has a surface layer and a core. The surface layer has a hardened layer of tempered martensite, and the core has a mixed structure of bainite, ferrite and pearlite.
    Type: Application
    Filed: January 22, 2018
    Publication date: November 5, 2020
    Inventors: Jun Ho Chung, Tae Hyung Kim, Ju Sang Lee, Se Jin Kim, Kyoung Rok Lim
  • Patent number: 10700329
    Abstract: The present invention relates to a method for manufacturing a separator for batteries, a separator manufactured by the method, and a secondary battery including the separator. More specifically, the present invention relates to a method for manufacturing a separator having enhanced tensile strength by performing a shutdown process stopping a stretch during a process of stretching a base film of the separator.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: June 30, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kee Wook Kim, Sang Ho Lee, Jung Seong Lee, Jun Ho Chung, Jae Hyun Cho
  • Publication number: 20200048726
    Abstract: A method for manufacturing a high-strength steel bar can include the steps of: reheating a steel slab at a temperature ranging from 1000° C. to 1100° C., the steel slab including a certain amount of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), copper (Cu), nickel (Ni), molybdenum (Mo), aluminum (Al), vanadium (V), nitrogen (N), antimony (Sb), tin (Sn), and iron (Fe) and other inevitable impurities, The method can further include finish hot-rolling the reheated steel slab at a temperature of 850° C. to 1000° C., and cooling the hot-rolled steel to a martensite transformation start temperature (Ms (° C.)) through a tempcore process.
    Type: Application
    Filed: October 20, 2017
    Publication date: February 13, 2020
    Inventors: Jun Ho Chung, Won Hoe Kim, Jung Wook Park, Hyun Sub Kim
  • Patent number: 10340491
    Abstract: The present invention relates to a method for manufacturing a separator in which the tensile strength is enhanced and melt shrinkage is reduced by controlling elongation step from among the manufacturing steps thereof. Additionally, the present invention relates to a separator having superb winding processability as well as superb thermal stability due to the raised the tensile strength while maintaining a low rate of melt shrinkage. Furthermore, the present invention relates to an electrochemical battery having enhanced stability by utilizing a separator having high tensile strength and a low rate of melt shrinkage.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: July 2, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang Ho Lee, Kee Wook Kim, Jung Seong Lee, Jung Sue Jang, Jun Ho Chung, Jae Hyun Cho
  • Patent number: 10230090
    Abstract: A polyolefin-based porous separator, including a first polyolefin-based porous film on a first surface of a second polyolefin-based porous film, and a third polyolefin-based porous film on a second surface of the second polyolefin-based porous film, each of the first and third polyolefin-based porous films containing inorganic particles having an average particle size of 10 nm to 100 nm, a thickness ratio of the first polyolefin-based porous film, the second polyolefin-based porous film, and the third polyolefin-based porous film being 0.5 to 1.5:1 to 6:0.5 to 1.5, and thermal shrinkage rates of the separator in a machine direction and a transverse direction measured after standing at 120° C. for 1 hour each being 5% or less, and air permeability of the separator being 250 sec/100 cc or less.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: March 12, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang Ho Lee, Kee Wook Kim, Yun Gi Kim, Jung Seong Lee, Jung Sue Jang, Jun Ho Chung, Jae Hyun Cho, Dae Hyun Hong
  • Publication number: 20180362667
    Abstract: The present invention relates to a monoclonal antibody specific to porcine circovirus 2 (PCV2) and a method for diagnosing post-weaning multi-systemic wasting syndrome (PMWS) using the same. More specifically, the present invention relates to monoclonal antibodies C4-1 and C4-8 of scFV-human C? fusion recombinant protein, which specifically binds to a decoy epitope of porcine circovirus 2, and to a method for diagnosing post-weaning multi-systemic wasting syndrome using the same. The monoclonal antibody of the present invention makes it possible to determine whether an antibody against PCV2 is a neutralizing antibody by a vaccine antigen or an antibody induced by immune decoy.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 20, 2018
    Inventors: Sun Hee Cho, Tae Eun Kim, Jun Ho Chung, Hyo Ri Kim, Jun Yeong Jin