Patents by Inventor Junhua Zhao

Junhua Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12282736
    Abstract: A system performs operations that include receiving, via first computing environment, a request to process text data using a first natural language processing (NLP) model. The operations further include accessing configuration data associated with the NLP model, where the configuration data generated using a domain specific language that supports a plurality of preprocessing modules in a plurality of programming languages. The operations also include selecting, based on the configuration data, one or more preprocessing modules of the plurality of preprocessing modules, generating, based on the configuration data, a preprocessing pipeline using the one or more preprocessing modules, and generating preprocessed text data by inputting the text data into the preprocessing pipeline. The preprocessed text data is provided to the first NLP model.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 22, 2025
    Assignee: PAYPAL, INC.
    Inventors: Yuehao Wu, Rajesh Munavalli, Junhua Zhao, Xin Chen, Meng Zang
  • Patent number: 12260203
    Abstract: Methods and systems are presented for providing a container orchestration framework for facilitating development and deployment of software applications across different operating environments within an enterprise system. Upon receiving a service request for processing a set of data is received, the container orchestration framework determines one or more machines that store the set of data. Instead of processing the set of data remotely, the container orchestration framework deploys a container that encapsulates an application on the one or more machines. Each application instance running on the one or more machines are executed to process a corresponding subset of data stored on the machine locally. The container orchestration framework obtains the output data from executing the applications on each of the one or more machines, and present the output data as a response to the service request.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: March 25, 2025
    Assignee: PAYPAL, INC.
    Inventors: Srinivasan Manoharan, Vinesh Chirakkil, Yuehao Wu, Junhua Zhao, Xiaoying Han, Chun Kiat Ho, Premila Viswanathan, Lin Song
  • Patent number: 12241891
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: March 4, 2025
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Michael Previte, Molly He, Junhua Zhao, Hui Zhen Mah, Chunhong Zhou, Sinan Arslan, Matthew Kellinger, Lorenzo Berti, Steve Xiangling Chen
  • Publication number: 20250019760
    Abstract: The present disclosure provides compositions comprising enzyme-based reagents, and methods using the enzyme-based reagents, for nucleic acid sequencing. The enzyme-based reagents efficiently remove sequencing read products from a first sequenced region of a template molecule, thereby reducing residual signals in a second sequenced region on the same template molecule.
    Type: Application
    Filed: May 3, 2024
    Publication date: January 16, 2025
    Inventors: William LIGHT, Hua YU, Junhua ZHAO, Su ZHANG, Samantha SNOW, Sinan ARSLAN, Matthew KELLINGER, Marco TJIOE, Scott IM, James GHADIALI, Michael KIM, Hermes TAYLOR, Michael PREVITE, Jake LEVIEUX, Ramreddy TIPANNA, Molly HE
  • Patent number: 12134766
    Abstract: Provided herein are methods for generating circular nucleic acid molecules and circular nucleic acid libraries. The methods can be used to generate clonal populations of target nucleic acid molecules for downstream applications such as sequencing.
    Type: Grant
    Filed: January 11, 2023
    Date of Patent: November 5, 2024
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Matthew Kellinger, Sinan Arslan, Michael Previte, Junhua Zhao
  • Patent number: 12117438
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 15, 2024
    Inventors: Sinan Arslan, Molly He, Matthew Kellinger, Jake Levieux, Michael Previte, Junhua Zhao, Su Zhang
  • Publication number: 20240230631
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: February 2, 2024
    Publication date: July 11, 2024
    Inventors: Sinan Arslan, Molly HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG
  • Publication number: 20240191278
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: November 15, 2023
    Publication date: June 13, 2024
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER, Mark AMBROSO, Tyler LOPEZ, Michael KLEIN, Virginia SAADE
  • Publication number: 20240191225
    Abstract: The present disclosure provides compositions comprising nucleic acid double-stranded splint adaptors, including kits, and methods that employ the double-stranded splint adaptors. The double-stranded splint adaptors (200) can be used in a one-pot, multi-enzyme reaction to introduce one or more new adaptor sequences into a library molecule. The double-stranded splint adaptor (200) comprises a first splint strand (long splint strand (300)) and a second splint strand (short splint strand (400)), where the first and second splint strands are hybridized together to form the double-stranded splint adaptor (200) having a double-stranded region and two flanking single-stranded regions. The second splint strand (400) carries the new adaptor sequence(s) to be introduced, such as for example a universal binding sequence, an index sequence and/or a random sequence.
    Type: Application
    Filed: September 12, 2023
    Publication date: June 13, 2024
    Inventors: Junhua ZHAO, Xiaodong QI, Kelly BLEASE, Hua YU, Matthew KELLINGER
  • Patent number: 12007231
    Abstract: A novel direct-ink-writing (DIW) method for printing a strain gauge array circuit is disclosed. Firstly, the whole circuit is layered by a 3D printing method; a thin layer of insulating material is printed on the first circuit layer, instead of printing an insulating bridge, to form the second insulating layer; a part needing to contact the second insulating layer is not printed, but one through hole is reserved; the second circuit layer is then printed; the functional layer of the strain gauge is finally covered; the electrodes on the functional layer can contact the second circuit layer or can contact the first circuit layer through the through holes, which ensures that the functional layer contacts the two circuit layers, and also ensures the insulation in a cross part of a matrix circuit; the printing of the array strain gauge is effectively completed; and the stability of measurement is ensured.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: June 11, 2024
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Junhua Zhao, Peishi Yu, Zhiyang Guo, Lixin Qi, Yu Liu
  • Publication number: 20240084380
    Abstract: The present disclosure provides compositions and related methods, e.g., for preparing immobilized nucleic acid nanostructures using compaction oligonucleotides. In some embodiments, rolling circle amplification reaction can be conducted with compaction oligonucleotides on-support or in-solution to generate concatemer molecules having multiple copies of a polynucleotide unit arranged in tandem. Each polynucleotide unit comprises a sequence-of-interest and at least one universal adaptor sequence that binds one end of a compaction oligonucleotide. The 5? and 3? regions of the compaction oligonucleotide can hybridize to the concatemer to pull together distal portions of the concatemer causing compaction of the concatemer to form a nanostructure. Nanostructures having tighter size and shape compared to concatemers generated in the absence of the compaction oligonucleotides.
    Type: Application
    Filed: August 15, 2023
    Publication date: March 14, 2024
    Inventors: Sinan ARSLAN, Michael KIM, Ramreddy TIPANNA, Chunhong ZHOU, William LIGHT, Hua YU, Junhua ZHAO, Tsung-Li LIU
  • Patent number: 11910536
    Abstract: In a direct-ink-writing (DIW) method for printing a strain gauge array circuit, several insulating strips are printed on the upper layer of the first circuit layer after the first circuit layer has been printed and cured, and the second circuit layer is then printed at the insulating strips. The functional layer of a strain gauge is printed and covered thereon without contacting the insulating strips; the head and tail electrodes of the functional layer are respectively connected to two layers of circuit layers; and finally, a layer of insulating material is printed for encapsulation. DIW is used to complete the whole printing. A new insulating method is used in a cross part of two silver lines of a row-column compound circuit. The local glue dispensing is changed to printing the insulating strips in routing regions, and ensures the strain transmission efficiency from the strain gauge substrate to the functional layer.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: February 20, 2024
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Peishi Yu, Junhua Zhao, Lixin Qi, Zhiyang Guo, Yu Liu
  • Patent number: 11891651
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: February 6, 2024
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker
  • Publication number: 20240011022
    Abstract: The present disclosure provides compositions comprising nucleic acid double-stranded splint adaptors, including kits, and methods that employ the double-stranded splint adaptors, e.g., PCR-free workflows. The double-stranded splint adaptors (200) can be used in a one-pot, multi-enzyme reaction to introduce one or more new adaptor sequences into a library molecule. The double-stranded splint adaptor (200) comprises a first splint strand (long splint strand (300)) and a second splint strand (short splint strand (400)), where the first and second splint strands are hybridized together to form the double-stranded splint adaptor (200) having a double-stranded region and two flanking single-stranded regions. The second splint strand (400) carries the new adaptor sequence(s) to be introduced, such as for example a universal binding sequence and/or an index sequence.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 11, 2024
    Inventors: Junhua ZHAO, Xiaodong QI, Shawn LEVY
  • Patent number: 11859241
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: February 8, 2023
    Date of Patent: January 2, 2024
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker, Mark Ambroso, Tyler Lopez, Michael Klein, Virginia Saade
  • Publication number: 20230392144
    Abstract: The present disclosure provides compositions comprising reagents employed in a nucleic acid library preparation workflow for removing deaminated bases, and methods for using the reagents. The compositions and methods described herein reduce base call errors, such as C:G to T:A transitions, in nucleic acid sequencing workflows.
    Type: Application
    Filed: June 2, 2023
    Publication date: December 7, 2023
    Inventors: Andrew PRICE, Junhua ZHAO, Semyon KRUGLYAK, Kelly BLEASE, Hua YU, Andrew ALTOMARE, Ryan KELLEY, Juan MORENO
  • Publication number: 20230342503
    Abstract: A system includes a first subsystem and a second subsystem that are used in a same chip. A security level of a first physical resource included in the first subsystem is higher than a security level of a second physical resource included in the second subsystem. The first subsystem includes an interrupt controller, and the interrupt controller is configured to manage an interrupt of a peripheral of the second subsystem. Embodiments of this application are for isolation between subsystems of different security levels in a chip.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Junhua Zhao, Tianhong Ding, Yanlei Jia, Qiang Xu
  • Publication number: 20230323450
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: March 9, 2023
    Publication date: October 12, 2023
    Inventors: Sinan Arslan, Molly Min HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG, Tyler LOPEZ
  • Patent number: 11781185
    Abstract: Provided herein are fluorescently-labeled nucleotide conjugates for nucleic acid analysis. Also provided are reagents used for forming binding complexes between a fluorescently-labeled nucleotide conjugate and a target nucleic acid sequence in the presence of one or more reagents disclosed herein. Binding complexes can be detected in the presence of the one or more reagents. For example, the one or more reagents may contain a photobleaching reducing agent configured to reduce photobleaching resulting from use of the fluorescently-labeled nucleotide conjugate to form the binding complex in a nucleic acid analysis. Such nucleic acid analysis may be used to identify sites of nucleobase binding or incorporation between the target nucleic acid sequence and one or more nucleotide moieties of the fluorescently-labeled nucleotide conjugate in a nucleic acid sequence reaction.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: October 10, 2023
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Sinan Arslan, Molly He, Michael Previte, Ramreddy Tippana, Hua Yu, William Light, Junhua Zhao
  • Publication number: 20230295692
    Abstract: Methods and systems for detecting the presence of a target nucleic acid sequence in one or more samples of a plurality of samples are described. The methods may comprise the use of linear barcoded nucleic acid probes that, upon hybridization to a target nucleic acid sequence, may be ligated to circularize the probe molecule, amplified, and sequenced. The use of a probe-specific barcode integrated into the nucleic acid probe molecule, and sample-specific barcodes that may be incorporated into the nucleic acid probe molecule or added during the amplification step, enable large-scale multiplexed assay and sample processing.
    Type: Application
    Filed: January 30, 2023
    Publication date: September 21, 2023
    Inventors: Lorenzo BERTI, Semyon KRUGLYAK, Matthew KELLINGER, Molly HE, Sinan ARSLAN, Junhua ZHAO, Michael PREVITE