Patents by Inventor Junichi Kako

Junichi Kako has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8122869
    Abstract: An air-fuel ratio control system of a multi-cylinder internal combustion engine provided with a throttle valve and opening characteristic control means, which system performs feedback control of an air-fuel ratio based on an output of a sensor detecting an air-fuel ratio of exhaust gas and is capable of performing more accurate air-fuel ratio control, is provided. In the feedback control, the relationship of the output of the sensor and a feedback value is corrected based on a feedback learning correction value learned and determined based on the output of the sensor during the feedback control, and, when newly learning the feedback learning correction value, the intake air amount is controlled by only the throttle valve.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: February 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiko Fujiwara, Norihisa Nakagawa, Taiga Hagimoto, Junichi Kako, Naoto Kato, Shuntaro Okazaki, Koji Ide
  • Publication number: 20120004828
    Abstract: The control system of an internal combustion engine of the present invention comprises an S/V ratio changing mechanism able to change an S/V ratio of a combustion chamber and a detection device having an output value changing in accordance with a hydrogen concentration in exhaust gas, which increases along with an increase in the S/V ratio, the internal combustion engine being controlled by the output value of the detection device. Further, the output value of the detection device or a parameter relating to operation of the internal combustion engine is corrected in accordance with the S/V ratio of the above S/V ratio changing mechanism. Due to this, even if the hydrogen concentration in the exhaust gas increases along with an increase in the S/V ratio, the internal combustion engine can be suitably controlled.
    Type: Application
    Filed: February 20, 2009
    Publication date: January 5, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuntaro Okazaki, Junichi Kako
  • Patent number: 8051641
    Abstract: The present invention has an object to provide an exhaust gas purifying apparatus for an internal combustion engine capable of obtaining accurate temperature information relating to a catalyst placed in an exhaust passage of the internal combustion engine. The degree of influence emthc of a catalyst inlet gas temperature and catalyst rear end temperature ethuf[end] is calculated (Step 102). An estimated value ethco of an outlet gas temperature is calculated by weighted averaging the inlet gas temperature and the catalyst rear end temperature ethuf[end] considering the degree of influence emthc (Step 104). A temperature correction coefficient ekthuf[x] for each region of the catalyst is calculated as a function f(emthc) of the degree of influence emthc (Step 108).
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: November 8, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Junichi Kako, Shinichi Soejima, Ryozo Kayama
  • Publication number: 20100268436
    Abstract: This invention is intended to ensure that a control device for a vehicle drive unit is capable of realizing desired torque by making the main-actuator and sub-actuator collaborate adequately while holding the interposition of the sub-actuator as low as possible. For this end, a future target of torque that is going to be output from the engine and a realization timing of the future target are taken as reservation information for reserving engine torque regulation. Next, the required period, which is required to realize the future target when a main-actuator (a throttle) is operated to regulate the torque, is computed from a current engine operating condition. Then, the operation of the main-actuator is started at the timing preceding the realization timing by the required period for realizing the future target.
    Type: Application
    Filed: October 1, 2008
    Publication date: October 21, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Soejima, Junichi Kako, Kaoru Ohtsuka, Hiroyuki Tanaka, Keisuke Kawai
  • Publication number: 20100191406
    Abstract: A control apparatus for a vehicle drive unit including a control structure of a hierarchical type having a demand generation level, a mediation level, and a control variable setting level and a signal is transmitted in one direction from a higher level of hierarchy to a lower level of hierarchy. The demand generation level includes demand output elements for each capability. The mediation level includes mediation elements, each corresponding to a classified category of demands. Each of the mediation elements collects demand values of the category of which the mediation elements are in charge and performs mediation according to a rule to arrive at a single demand value. The control variable setting level includes an adjuster portion adjusting each of the mediated demand values based on a relationship between each other and control variable calculation elements calculating a control variable of each of a plurality of actuators based on the adjusted demand value.
    Type: Application
    Filed: July 8, 2008
    Publication date: July 29, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Tanaka, Junichi Kako, Kaoru Ohtsuka, Shinichi Soejima, Keisuke Kawai, Naoto Kato, Hayato Nakada
  • Publication number: 20100108046
    Abstract: An air-fuel ratio control device includes an air-fuel ratio sensor provided upstream from a three-way catalyst, and an oxygen sensor provided downstream from the three-way catalyst. The air-fuel ratio control device controls the fuel supply amount based on the output from the air-fuel ratio sensor, and compensates for errors in the air-fuel ratio sensor by correcting the fuel supply amount based on the output from the oxygen sensor. The fuel supply correction amount is calculated based on an integral term that integrates the deviation between the output from the downstream air-fuel ratio sensor and the target air-fuel ratio. When a fuel supply adjustment control is executed, the value of the integral term in the sub-feedback control is not updated for a predetermined period after the fuel supply adjustment control ends. The actual air-fuel ratio is thus brought to the target air-fuel ratio in an appropriate manner.
    Type: Application
    Filed: April 11, 2008
    Publication date: May 6, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norihisa Nakagawa, Takahiko Fujiwara, Taiga Hagimoto, Junichi Kako, Naoto Kato, Shuntaro Okazaki
  • Publication number: 20100047133
    Abstract: The present invention has an object to provide an exhaust gas purifying apparatus for an internal combustion engine capable of obtaining accurate temperature information relating to a catalyst placed in an exhaust passage of the internal combustion engine. The degree of influence emthc of a catalyst inlet gas temperature and catalyst rear end temperature ethuf[end] is calculated (Step 102). An estimated value ethco of an outlet gas temperature is calculated by weighted averaging the inlet gas temperature and the catalyst rear end temperature ethuf[end] considering the degree of influence emthc (Step 104). A temperature correction coefficient ekthuf[x] for each region of the catalyst is calculated as a function f(emthc) of the degree of influence emthc (Step 108).
    Type: Application
    Filed: October 13, 2006
    Publication date: February 25, 2010
    Applicants: TOYOTA JIDOSHA KABBUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Junichi Kako, Shinichi Soejima, Ryozo Kayama
  • Publication number: 20100024790
    Abstract: An air-fuel ratio control system of a multi-cylinder internal combustion engine provided with a throttle valve and opening characteristic control means, which system performs feedback control of an air-fuel ratio based on an output of a sensor detecting an air-fuel ratio of exhaust gas and is capable of performing more accurate air-fuel ratio control, is provided. In the feedback control, the relationship of the output of the sensor and a feedback value is corrected based on a feedback learning correction value learned and determined based on the output of the sensor during the feedback control, and, when newly learning the feedback learning correction value, the intake air amount is controlled by only the throttle valve.
    Type: Application
    Filed: August 13, 2007
    Publication date: February 4, 2010
    Inventors: Takahiko Fujiwara, Norihisa Nakagawa, Taiga Hagimoto, Junichi Kako, Naoto Kato, Shuntaro Okazaki, Koji Ide
  • Patent number: 7474956
    Abstract: An air-fuel ratio control system maintaining constant an oxygen storage amount or oxygen release amount per unit time with respect to an exhaust purification catalyst having an oxygen storage capacity even if the intake air amount changes is provided.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: January 6, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norihisa Nakagawa, Takahiko Fujiwara, Taiga Hagimoto, Junichi Kako, Naoto Kato, Shuntaro Okazaki
  • Publication number: 20080147297
    Abstract: An air-fuel ratio control system maintaining constant an oxygen storage amount or oxygen release amount per unit time with respect to an exhaust purification catalyst having an oxygen storage capacity even if the intake air amount changes is provided.
    Type: Application
    Filed: September 13, 2006
    Publication date: June 19, 2008
    Applicant: TOYOTA JIDOSHA KABUSHIKI
    Inventors: Norihisa Nakagawa, Takahiko Fujiwara, Taiga Hagimoto, Junichi Kako, Naoto Kato, Shuntaro Okazaki
  • Publication number: 20070169465
    Abstract: The output from an air-fuel ratio sensor is corrected using an integral term that is calculated by integrating values of deviation of the output from an oxygen sensor with respect to a reference output that would be obtained when the combustion air-fuel ratio is stoichiometric, when an engine operates with a target combustion air-fuel ratio set to the stoichiometric air-fuel ratio. A fuel-cutoff prohibition period in which fuel supply cutoff is prohibited is set so that the engine continues to operate with the target combustion air-fuel ratio set to the stoichiometric air-fuel ratio, until the integral term is updated at least once. The integral term may be updated when a predetermined updating condition is satisfied.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 26, 2007
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihisa Nakagawa, Takahiko Fujiwara, Taiga Hagimoto, Junichi Kako, Naoto Kato, Shuntaro Okazaki
  • Patent number: 6901744
    Abstract: An air-fuel ratio control apparatus of an internal combustion engine according to the present invention is provided with oxygen storage amount estimating means, downstream exhaust air-fuel ratio detecting means, maximum oxygen storage amount estimating means, and air-fuel ratio target setting means. The oxygen storage amount estimating means estimates an oxygen storage amount of an exhaust purifying catalyst, based on a history of an oxygen adsorption/desorption amount of the exhaust purifying catalyst located on an exhaust path. The downstream exhaust air-fuel ratio detecting means is located downstream of the exhaust purifying catalyst and detects an exhaust air-fuel ratio downstream of the exhaust purifying catalyst. The maximum oxygen storage amount estimating means estimates a maximum oxygen storage amount, based on an oxygen storage amount estimate when the exhaust air-fuel ratio detected is a predetermined air-fuel ratio.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: June 7, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Kako, Toshinari Nagai, Naohide Fuwa, Kazunori Kojima, Akihiro Katayama, Naoto Kato
  • Patent number: 6860101
    Abstract: An exhaust gas purification system comprises a NOx catalyst for absorbing the NOx in the exhaust gas when the air-fuel ratio of the influent exhaust gas is lean and purifying by reducing the absorbed NOx with a reducing agent in the exhaust gas when the air-fuel ratio of the exhaust gas turns rich, a first unit for calculating the amount of NOx absorbed per unit time in each area of the NOx catalyst when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is lean, and a second unit for calculating the total amount of NOx absorbed into the NOx catalyst by totaling the amounts of NOx calculated by the first calculation unit for the areas of the NOx catalyst.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: March 1, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Kako, Toshinari Nagai, Naoto Katoh, Akihiro Katayama, Kentaro Matsumoto, Shinji Kojima, Naoki Baba
  • Patent number: 6799560
    Abstract: A fuel injection amount control apparatus of an internal combustion engine is arranged to start injection of a fuel into an intake passage of the engine when a certain engine start condition is satisfied, and stop the injection of the fuel when a certain engine stop condition is satisfied. The control apparatus estimates an amount of fuel deposited on an intake passage forming member that defines the intake passage, and determines a fuel injection amount based on the estimated fuel deposition amount. The control apparatus also executes a particular process for making an actual fuel deposition amount on the intake passage forming member substantially equal to zero, after the engine stop condition is satisfied and before the injection of the fuel is started under a condition that the engine start condition is satisfied.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: October 5, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazunori Kojima, Junichi Kako, Koichi Ueda
  • Publication number: 20040079342
    Abstract: A fuel injection amount control apparatus of an internal combustion engine is arranged to start injection of a fuel into an intake passage of the engine when a certain engine start condition is satisfied, and stop the injection of the fuel when a certain engine stop condition is satisfied. The control apparatus estimates an amount of fuel deposited on an intake passage forming member that defines the intake passage, and determines a fuel injection amount based on the estimated fuel deposition amount. The control apparatus also executes a particular process for making an actual fuel deposition amount on the intake passage forming member substantially equal to zero, after the engine stop condition is satisfied and before the injection of the fuel is started under a condition that the engine start condition is satisfied.
    Type: Application
    Filed: October 2, 2003
    Publication date: April 29, 2004
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazunori Kojima, Junichi Kako, Koichi Ueda
  • Patent number: 6698188
    Abstract: A NOx occluding member that occludes NOx when the air-fuel ratio is on the fuel-lean side is disposed in an engine exhaust passage. An NOx ammonia sensor is disposed in the engine exhaust passage downstream of the NOx occluding member. A surplus amount of a reducing agent that is not used to release NOx is determined from a change in the ammonia concentration detected by the NOx ammonia sensor when the air-fuel ratio is changed to the fuel-rich side so as to release the NOx from the NOx occluding member.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: March 2, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuyuki Irisawa, Hiroshi Tanaka, Junichi Kako
  • Patent number: 6615803
    Abstract: In a fuel injection control apparatus of an internal combustion engine for controlling a fuel supply quantities by making use of a fuel behavior model obtained by modeling the dynamic behavior of fuel flowing from injector into combustion chamber of cylinder of engine, the fuel behavior model is configured to estimate the dynamic fuel behavior such as attachment onto and detachment from a wall surface, e.g., using separate quantities, a wall surface adhesion quantity Fwv(k) of a low boiling point component and a wall surface adhesion quantity Fwp(k) of a high boiling point component at each time k, and to control an injected fuel quantity Fi(k) so that a fuel quantity Fc(k) of fuel flowing into the cylinder becomes a target value.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: September 9, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazunori Kojima, Junichi Kako
  • Publication number: 20030070419
    Abstract: An exhaust gas purification system comprises a NOx catalyst for absorbing the NOx in the exhaust gas when the air-fuel ratio of the influent exhaust gas is lean and purifying by reducing the absorbed NOx with a reducing agent in the exhaust gas when the air-fuel ratio of the exhaust gas turns rich, a first unit for calculating the amount of NOx absorbed per unit time in each area of the NOx catalyst when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is lean, and a second unit for calculating the total amount of NOx absorbed into the NOx catalyst by totaling the amounts of NOx calculated by the first calculation unit for the areas of the NOx catalyst.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 17, 2003
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junichi Kako, Toshinari Nagai, Naoto Katoh, Akihiro Katayama, Kentaro Matsumoto, Shinji Kojima, Naoki Baba
  • Publication number: 20020194840
    Abstract: An air-fuel ratio control apparatus of an internal combustion engine according to the present invention is provided with oxygen storage amount estimating means, downstream exhaust air-fuel ratio detecting means, maximum oxygen storage amount estimating means, and air-fuel ratio target setting means. The oxygen storage amount estimating means estimates an oxygen storage amount of an exhaust purifying catalyst, based on a history of an oxygen adsorption/desorption amount of the exhaust purifying catalyst located on an exhaust path. The downstream exhaust air-fuel ratio detecting means is located downstream of the exhaust purifying catalyst and detects an exhaust air-fuel ratio downstream of the exhaust purifying catalyst. The maximum oxygen storage amount estimating means estimates a maximum oxygen storage amount, based on an oxygen storage amount estimate when the exhaust air-fuel ratio detected is a predetermined air-fuel ratio.
    Type: Application
    Filed: August 6, 2002
    Publication date: December 26, 2002
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junichi Kako, Toshinari Nagai, Naohide Fuwa, Kazunori Kojima, Akihiro Katayama, Naoto Kato
  • Patent number: 6481201
    Abstract: An air-fuel ratio control apparatus of an internal combustion engine according to the present invention is provided with oxygen storage amount estimating means, downstream exhaust air-fuel ratio detecting means, maximum oxygen storage amount estimating means, and air-fuel ratio target setting means. The oxygen storage amount estimating means estimates an oxygen storage amount of an exhaust purifying catalyst, based on a history of an oxygen adsorption/desorption amount of the exhaust purifying catalyst located on an exhaust path. The downstream exhaust air-fuel ratio detecting means is located downstream of the exhaust purifying catalyst and detects an exhaust air-fuel ratio downstream of the exhaust purifying catalyst. The maximum oxygen storage amount estimating means estimates a maximum oxygen storage amount, based on an oxygen storage amount estimate when the exhaust air-fuel ratio detected is a predetermined air-fuel ratio.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: November 19, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Kako, Toshinari Nagai, Naohide Fuwa, Kazunori Kojima, Akihiro Katayama, Naoto Kato