Patents by Inventor Junichiro Urabe

Junichiro Urabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180309046
    Abstract: Magnetoresistive effect device including magnetoresistive effect element which high-frequency filter can be realized is provided. Magnetoresistive effect device includes: at least one magnetoresistive effect element including magnetization fixed, spacer, and magnetization free layer wherein magnetization direction is changeable; first and second ports; signal line; and direct-current input terminal. First and second ports are connected to each other via signal line. Magnetoresistive effect element is connected to signal line and is to be connected to ground in parallel to second port. Direct-current input terminal is connected to signal line. Closed circuit including magnetoresistive effect element, signal line, ground, and direct-current input terminal is to be formed. Magnetoresistive effect element is arranged wherein direct current input from direct-current input terminal flows through magnetoresistive effect element in direction from magnetization fixed layer to magnetization free layer.
    Type: Application
    Filed: June 2, 2016
    Publication date: October 25, 2018
    Applicant: TDK CORPORATION
    Inventors: Junichiro URABE, Tetsuya SHIBATA, Atsushi SHIMURA, Takekazu YAMANE, Tsuyoshi SUZUKI
  • Publication number: 20180277749
    Abstract: A magnetoresistive effect device including a magnetoresistive effect element with which a high-frequency filter can be realized is provided. Magnetoresistive effect device includes: at least one magnetoresistive effect element including a magnetization fixed layer, spacer layer, and magnetization free layer in which magnetization direction is changeable; first and second port; signal line; and direct-current input terminal. First and second ports are connected to each other via signal line. Magnetoresistive effect element is connected to signal line and is to be connected to ground in parallel to second port. Direct-current input terminal is connected to signal line. A closed circuit including magnetoresistive effect element, signal line, ground, and direct-current input terminal is to be formed.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 27, 2018
    Applicant: TDK CORPORATION
    Inventors: Junichiro URABE, Tetsuya SHIBATA, Atsushi SHIMURA, Takekazu YAMANE, Tsuyoshi SUZUKI
  • Patent number: 10074688
    Abstract: A magnetoresistive effect device includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port, a second port, a signal line, and a direct-current input terminal. The first port, the first magnetoresistive effect element, and the second port are connected in series to each other in this order via the signal line. The second magnetoresistive effect element is connected to the signal line in parallel with the second port. The first magnetoresistive effect element and the second magnetoresistive effect element are formed so that the relationship between the direction of direct current that is input from the direct-current input terminal and that flows through the first magnetoresistive effect element and the order of arrangement of a magnetization fixed layer, a spacer layer, and a magnetization free layer in the first magnetoresistive effect element is opposite to the above relationship in the second magnetoresistive effect element.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: September 11, 2018
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Tsuyoshi Suzuki, Junichiro Urabe, Takekazu Yamane, Atsushi Shimura
  • Publication number: 20180159492
    Abstract: A high-frequency filter includes at least one magnetoresistive effect element; a first port through which a high-frequency signal is input; a second port through which a high-frequency signal is output; and a signal line.
    Type: Application
    Filed: January 12, 2018
    Publication date: June 7, 2018
    Applicant: TDK CORPORATION
    Inventors: Tetsuya SHIBATA, Junichiro URABE, Atsushi SHIMURA, Takekazu YAMANE
  • Patent number: 9966922
    Abstract: A magnetoresistive effect device includes a magnetoresistive effect element first and second ports, a signal line, an inductor, and a direct current input terminal. The first port, the magnetoresistive effect element, and the second port are connected in series in this order via the signal line. The inductor is connected to one of the signal line between the magnetoresistive effect element and the first port and the signal line between the magnetoresistive effect element and the second port and is capable of being connected to ground. The direct-current input terminal is connected to the other of the above signal lines. A closed circuit including the magnetoresistive effect element, the signal line, the inductor, the ground, and direct-current input terminal is capable of being formed. The magnetoresistive effect element is arranged so that direct current flows in a direction from a magnetization fixed layer to a magnetization free layer.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: May 8, 2018
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Junichiro Urabe, Takekazu Yamane, Tsuyoshi Suzuki
  • Patent number: 9948267
    Abstract: A magnetoresistive effect device includes at least one magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer, a first port, a second port, a first signal line which is connected to the first port and through which high-frequency current corresponding to a high-frequency signal input into the first port flows, a second signal line, and a direct-current input terminal. The magnetoresistive effect element is arranged so that a high-frequency magnetic field occurring from the first signal line is applied to the magnetization free layer. The magnetoresistive effect element is connected to the second port via the second signal line. The direct-current input terminal is connected to the magnetoresistive effect element.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 17, 2018
    Assignee: TDK CORPORATION
    Inventors: Takekazu Yamane, Tetsuya Shibata, Junichiro Urabe, Atsushi Shimura
  • Patent number: 9906199
    Abstract: A magnetoresistive effect device includes a magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer; a first port; a second port; a signal line; an impedance element; and a direct-current input terminal. The first port, the magnetoresistive effect element, and the second port are connected in series in this order via the signal line. The impedance element is connected to ground and to the signal line between the magnetoresistive effect element and the first port or the second port. The direct-current input terminal is connected to the signal line at the opposite side to the impedance element with the magnetoresistive effect element in between the direct-current input terminal and the impedance element. A closed circuit including the magnetoresistive effect element, the signal line, the impedance element, the ground, and the direct-current input terminal is to be formed.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: February 27, 2018
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Junichiro Urabe, Atsushi Shimura, Takekazu Yamane
  • Publication number: 20180040666
    Abstract: A magnetoresistive effect device includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port, a second port, a signal line, and a direct-current input terminal. The first port, the first magnetoresistive effect element, and the second port are connected in series to each other in this order via the signal line. The second magnetoresistive effect element is connected to the signal line in parallel with the second port. The first magnetoresistive effect element and the second magnetoresistive effect element are formed so that the relationship between the direction of direct current that is input from the direct-current input terminal and that flows through the first magnetoresistive effect element and the order of arrangement of a magnetization fixed layer, a spacer layer, and a magnetization free layer in the first magnetoresistive effect element is opposite to the above relationship in the second magnetoresistive effect element.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 8, 2018
    Applicant: TDK CORPORATION
    Inventors: Tetsuya SHIBATA, Tsuyoshi SUZUKI, Junichiro URABE, Takekazu YAMANE, Atsushi SHIMURA
  • Publication number: 20170345449
    Abstract: A magnetoresistive effect device includes a magnetoresistive effect element first and second ports, a signal line, an inductor, and a direct current input terminal. The first port, the magnetoresistive effect element, and the second port are connected in series in this order via the signal line. The inductor is connected to one of the signal line between the magnetoresistive effect element and the first port and the signal line between the magnetoresistive effect element and the second port and is capable of being connected to ground. The direct-current input terminal is connected to the other of the above signal lines. A closed circuit including the magnetoresistive effect element, the signal line, the inductor, the ground, and direct-current input terminal is capable of being formed. The magnetoresistive effect element is arranged so that direct current flows in a direction from a magnetization fixed layer to a magnetization free layer.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 30, 2017
    Applicant: TDK CORPORATION
    Inventors: Tetsuya SHIBATA, Junichiro URABE, Takekazu YAMANE, Tsuyoshi SUZUKI
  • Publication number: 20170244377
    Abstract: A magnetoresistive effect device includes at least one magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer, a first port, a second port, a first signal line which is connected to the first port and through which high-frequency current corresponding to a high-frequency signal input into the first port flows, a second signal line, and a direct-current input terminal. The magnetoresistive effect element is arranged so that a high-frequency magnetic field occurring from the first signal line is applied to the magnetization free layer. The magnetoresistive effect element is connected to the second port via the second signal line. The direct-current input terminal is connected to the magnetoresistive effect element.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 24, 2017
    Applicant: TDK CORPORATION
    Inventors: Takekazu YAMANE, Tetsuya SHIBATA, Junichiro URABE, Atsushi SHIMURA
  • Publication number: 20160277000
    Abstract: A magnetoresistive effect device includes a magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer; a first port; a second port; a signal line; an impedance element; and a direct-current input terminal. The first port, the magnetoresistive effect element, and the second port are connected in series in this order via the signal line. The impedance element is connected to ground and to the signal line between the magnetoresistive effect element and the first port or the second port. The direct-current input terminal is connected to the signal line at the opposite side to the impedance element with the magnetoresistive effect element in between the direct-current input terminal and the impedance element. A closed circuit including the magnetoresistive effect element, the signal line, the impedance element, the ground, and the direct-current input terminal is to be formed.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 22, 2016
    Applicant: TDK CORPORATION
    Inventors: Tetsuya SHIBATA, Junichiro URABE, Atsushi SHIMURA, Takekazu YAMANE
  • Publication number: 20110148716
    Abstract: A multiple resonance antenna includes a dielectric substrate, a first antenna electrode and a second antenna electrode, the first and second antenna electrodes being disposed together on the dielectric substrate with first ends connected to each other but with second ends remaining free, the dielectric substrate including a high-dielectric part having a higher relative permittivity than another part, the high-dielectric part being disposed beneath a part of the first antenna electrode including the second end.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: TDK CORPORATION
    Inventors: Naoki SOTOMA, Hideaki Shimoda, Junichiro Urabe, Noriyuki Hirabayashi