Patents by Inventor Junko M. Watson

Junko M. Watson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9011781
    Abstract: The invention describes catalysts, methods of making catalysts, methods of making a microchannel reactor, and methods of conducting chemical reactions. It has been discovered that superior performance can be obtained from a catalyst formed by directly depositing a catalytic material onto a (low surface area) thermally-grown alumina layer. Improved methods of conducting oxidative dehydrogenations are also described.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: April 21, 2015
    Assignee: Velocys, Inc.
    Inventors: Richard Long, Junko M. Watson, Francis P. Daly, Terry Mazanec, Barry L. Yang
  • Patent number: 8569202
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: October 29, 2013
    Assignee: Velocys Corp.
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Steven T. Perry, Anna Lee Tonkovich, Sean P. Fitzgerald, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chen, Robert Rozmiarek, XiaoHong Li
  • Patent number: 8450237
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: May 28, 2013
    Assignee: Velocys, Inc.
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Steven T. Perry, Anna Lee Tonkovich, Sean P. Fitzgerald, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chen, Robert Rozmiarek, XiaoHong Li
  • Publication number: 20130023407
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 24, 2013
    Applicant: VELOCYS INC.
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Steven T. Perry, Anna Lee Tonkovich, Sean P. Fitzgerald, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chen, Robert Rozmiarek, XiaoHong Li
  • Publication number: 20120302811
    Abstract: The invention describes catalysts, methods of making catalysts, methods of making a microchannel reactor, and methods of conducting chemical reactions. It has been discovered that superior performance can be obtained from a catalyst formed by directly depositing a catalytic material onto a (low surface area) thermally-grown alumina layer. Improved methods of conducting oxidative dehydrogenations are also described.
    Type: Application
    Filed: July 31, 2012
    Publication date: November 29, 2012
    Applicant: Velocys Inc.
    Inventors: Richard Long, Junko M. Watson, Francis P. Daly, Terry Mazanec, Barry L. Yang
  • Patent number: 8277773
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: October 2, 2012
    Assignee: Velocys Corp.
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Steven T. Perry, Anna Lee Tonkovich, Sean P. Fitzgerald, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chen, Robert Rozmiarek, XiaoHong Li
  • Patent number: 8206597
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: June 26, 2012
    Assignee: Velocys, Inc.
    Inventors: Barry L. Yang, Anna Lee Tonkovich, Junko M. Watson, Francis P. Daly, Sean P. Fitzgerald, Chunshe Cao, Xiaohong Li, Terry Mazanec, Bradley R. Johnson, Ravi Arora, David J. Hesse, Dongming Qiu, Rachid Taha, Jeffrey J. Ramler, Yong Wang, Richard Long, Ya-Huei Chin
  • Patent number: 8062623
    Abstract: Catalysts containing 30 weight percent or more platinum have surprisingly been discovered to possess superior stability and activity for catalyzing combustion reactions. The addition of rhenium improves catalyst performance in fuel lean conditions but has undesirable effects in fuel rich conditions. The invention provides integrated combustion microreactors, chemical systems utilizing these integrated combustion microreactors, methods of combustion, and methods of providing heat to endothermic reactions in integrated combustion microreactors.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: November 22, 2011
    Assignee: Velocys
    Inventors: Francis P. Daly, Junko M. Watson, Yong Wang, Jianli Hu, Chunshe Cao, Richard Long
  • Publication number: 20110182804
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 28, 2011
    Applicant: VELOCYS INC.
    Inventors: Richard Long, Barry L. Yang, Francis P. Daly, Junko M. Watson, Terry Mazanec, Sean P. Fitzgerald, Bradley R. Johnson, Xiaohong Li, Chunshe Cao, Ya-Huei Chin, Anna Lee Tonkovich, Ravi Arora, David J. Hesse, Dongming Qiu, Rachid Taha, Jeffrey J. Ramler, Yong Wang
  • Patent number: 7981831
    Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 19, 2011
    Assignee: Velocys
    Inventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Watson, Abhishek Gupta
  • Patent number: 7874432
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: January 25, 2011
    Assignee: Velocys
    Inventors: Barry L. Yang, Francis P. Daly, Junko M. Watson, Terry Manzanec, Sean P. Fitzgerald, Bradley R. Johnson, Xiaohong Li, Chunshe Cao, Ya-Huei Chin, Anna Lee Tonkovich, Ravi Arora, David J. Hesse, Dongming Qiu, Rachid Taha, Jeffrey J. Ramler, Yong Wang, Richard Long
  • Publication number: 20100196226
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: VELOCYS INC.
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Anna Lee Tonkovich, Sean P. Fitzgerald, Steven T. Perry, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chin, Robert Rozmiarek, XiaoHong Li
  • Patent number: 7722854
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: May 25, 2010
    Assignee: Velocy's
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Anna Lee Tonkovich, Sean P. Fitzgerald, Steven T. Perry, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chin, Robert Rozmiarek, XiaoHong Li
  • Patent number: 7566441
    Abstract: The invention provides methods of combusting a fuel in a reactor that includes at least 3 zones each of which contains a solid catalyst. A method of making a thermally-stable alumina support from fumed alumina is also described.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 28, 2009
    Assignee: Velocys
    Inventors: Francis P. Daly, Junko M. Watson, Yong Wang, Jianli Hu, Chunshe Cao, Richard Long, Rachid Taha
  • Patent number: 7326394
    Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: February 5, 2008
    Assignee: Velocys
    Inventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Watson, Abhishek Gupta
  • Publication number: 20040266615
    Abstract: The present invention provides a Mg-stabilized alumina catalyst support and a catalyst comprising Rh on a Mg-stabilized alumina support. The catalyst is characterized by surprisingly superior results in catalyzing methane steam reforming.
    Type: Application
    Filed: February 13, 2004
    Publication date: December 30, 2004
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Anna Lee Tonkovich, Sean P. Fitzgerald, Steven T. Perry, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chin, Robert Rozmiarek, XiaoHong Li
  • Publication number: 20040265225
    Abstract: The present invention provides catalysts, reactors, and methods of steam reforming over a catalyst. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described. For example, a coated catalyst was demonstrated to be highly stable under steam reforming conditions (high temperature and high pressure of steam). Methods of making steam reforming catalysts are also described.
    Type: Application
    Filed: February 13, 2004
    Publication date: December 30, 2004
    Inventors: Junko M. Watson, Francis P. Daly, Yong Wang, Anna Lee Tonkovich, Sean P. Fitzgerald, Steven T. Perry, Laura J. Silva, Rachid Taha, Enrique Aceves de Alba, Ya-Huei Chin, Robert Rozmiarek, XiaoHong Li
  • Publication number: 20040175317
    Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 9, 2004
    Inventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Watson, Abhishek Gupta
  • Patent number: 6709643
    Abstract: The present invention includes a supported catalyst for the reduction of nitrogen oxides (NOx) with a lower hydrocarbon. The supported catalyst comprising at least one active metal and at least one promoter metal attached to a support. The support may additionally include activated carbon. The promoter metals may be chosen from the lanthanide metals and the active metals may be chosen from palladium or platinum. The invention also includes a method of making the above mentioned catalysts and a method of using the catalysts to reduce nitrogen oxides (NOx) with a lower hydrocarbon.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: March 23, 2004
    Assignee: The Ohio State University
    Inventors: Umit S. Ozkan, Junko M. Watson