Patents by Inventor Junquan Xu

Junquan Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7262016
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: August 28, 2007
    Assignee: Aviva Biosciences Corporation
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Liang Tao, David M. Rothwarf
  • Publication number: 20070160984
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a bead, which bead comprises: a) a magnetizable substance; and b) an electrically conductive substance or an optical labeling substance. Methods and kits for isolating, detecting and manipulating moieties and synthesizing libraries using the beads are also provided.
    Type: Application
    Filed: March 6, 2007
    Publication date: July 12, 2007
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Tao, Jing Cheng
  • Patent number: 7214427
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a bead, which bead comprises: a) a magnetizable substance; and b) an electrically conductive substance or an optical labeling substance. Methods and kits for isolating, detecting and manipulating moieties and synthesizing libraries using the beads are also provided.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: May 8, 2007
    Assignee: Aviva Biosciences Corporation
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Liang Tao, Jing Cheng
  • Patent number: 7166443
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells from a complex fluid sample. In particular, the enrichment of fetal cells from maternal samples, such as maternal blood samples, can greatly aid in the detection of fetal abnormalities or a variety of genetic conditions. In addition, the present invention recognizes that the enrichment of rare malignant cells from patient samples, can aid in diagnosis, prognosis, and development of therapeutic modalities for patients. The invention includes microfabricated filters for filtering fluid samples and methods of enriching rare cells of fluid samples using microfabricated filters of the present invention. The invention also includes solutions for the selective sedimentation of red blood cells (RBCs) from a blood sample and methods of using selective RBC sedimentation solutions for enriching rare cells of a fluid sample.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: January 23, 2007
    Assignee: Aviva Biosciences Corporation
    Inventors: George Walker, Junquan Xu, Douglas Yamanishi, Paul Hujsak, Lei Wu, Mingxian Huang, Guoliang Tao, Sara Snyder, Charina Yap
  • Publication number: 20060228749
    Abstract: This invention relates generally to the field of moiety or molecule manipulation in a chip format. In particular, the invention provides a method for manipulating a moiety in a microfluidic application, which method comprises: a) coupling a moiety to be manipulated onto surface of a binding partner of said moiety to form a moiety-binding partner complex; and b) manipulating said moiety-binding partner complex with a physical force in a chip format, wherein said manipulation is effected through a combination of a structure that is external to said chip and a structure that is built-in in said chip, thereby said moiety is manipulated.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 12, 2006
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Xiaobo Wang, Lei Wu, Jing Cheng, Weiping Yang, Junquan Xu
  • Patent number: 7081192
    Abstract: This invention relates generally to the field of moiety or molecule manipulation in a chip format. In particular, the invention provides a method for manipulating a moiety in a microfluidic application, which method comprises: a) coupling a moiety to be manipulated onto surface of a binding partner of said moiety to form a moiety-binding partner complex; and b) manipulating said moiety-binding partner complex with a physical force in a chip format, wherein said manipulation is effected through a combination of a structure that is external to said chip and a structure that is built-in in said chip, thereby said moiety is manipulated.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: July 25, 2006
    Assignee: Aviva Biosciences Corporation
    Inventors: Xiaobo Wang, Lei Wu, Jing Cheng, Weiping Yang, Junquan Xu
  • Publication number: 20060121446
    Abstract: The present invention includes devices and methods for transfecting a cell or cell population and dynamic monitoring of cellular events. A variety of microelectronic devices are provide that incorporate functions such as electroporation, modulation of a transmembrane potential and dynamic monitoring of cellular functions and mechanisms.
    Type: Application
    Filed: November 23, 2005
    Publication date: June 8, 2006
    Inventors: Yama Abassi, Xiaobo Wang, Josephine Atienza, Xiao Xu, Junquan Xu
  • Patent number: 7015047
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: March 21, 2006
    Assignee: Aviva Biosciences Corporation
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Liang Tao, David M. Rothwarf
  • Patent number: 6998236
    Abstract: This invention relates generally to the field of microarray technology. In particular, the invention provides an integrated microarray device, which device comprises a substrate comprising a plurality of distinct microlocations and a plurality of microarray chips, wherein the number of said microlocations equals to or is more than the number of said microarray chips. In preferred embodiments, the devices also comprises a temperature controller at some or all of the microlocations. The use of the integrated microarray devices for detecting interactions among various moieties in various fields, such as clinical diagnostics, drug discovery, environmental monitoring and forensic analysis, etc., are further provided.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: February 14, 2006
    Assignees: Capitalbio Corporation, Tsinghua University
    Inventors: Wei Shao, Junquan Xu, Wan-Li Xing, Jing Cheng
  • Publication number: 20060024732
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: September 20, 2005
    Publication date: February 2, 2006
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Liang Tao, David Rothwarf
  • Patent number: 6881314
    Abstract: This invention relates generally to the field of field-flow-fractionation. In particular, the invention provides apparatuses and methods for the discrimination of matters utilizing acoustic force, or utilizing acoustic force with electrophoretic or dielectrophoretic force, in field flow fractionation.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: April 19, 2005
    Assignee: Aviva Biosciences Corporation
    Inventors: Xiao-Bo Wang, Jing Cheng, Lei Wu, Junquan Xu
  • Patent number: 6858439
    Abstract: The present invention recognizes that separation of components of a sample facilitate, and are often necessary for, sample analysis. Dielectrophoretic separation provides an efficient, reliable, nondisruptive, and automatable method for the separation of moieties in a sample based on their dielectric properties. The present invention provides compositions and methods for enhancing the dielectrophoretic separation of one or more moieties in a sample. A first aspect of the present invention is a solution that when mixed with a sample, modifies at least one dielectric property of one or more components of the sample and has a conductivity such that one or more moieties of the sample can be separated using dielectrophoresis. Such solutions can be used in the analysis of samples on chips, and can be used in methods that use binding partners, including microparticles that can be translocated by dielectrophoretic forces, traveling-wave dielectrophoretic forces or magnetic forces.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: February 22, 2005
    Assignee: Aviva Biosciences
    Inventors: Junquan Xu, Xiaobo Wang, Jing Cheng, Weiping Yang, Lei Wu
  • Publication number: 20050009004
    Abstract: The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and other fluidic components and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and fluidic components and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes.
    Type: Application
    Filed: January 20, 2004
    Publication date: January 13, 2005
    Inventors: Jia Xu, Antonio Guia, Xiaobo Wang, Lei Wu, Junquan Xu, Mingxian Huang, David Rothwarf
  • Patent number: 6806050
    Abstract: This invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents. An electromagnetic biochip comprises an individually addressable micro-electromagnetic unit chip with ligand molecules immobilized on its surface. By controlling the electromagnetic field at each unit of the array and combining this control with magnetic modification of biomolecules, these chips can be used for directed manipulation, synthesis and release of biomolecules in order to increase sensitivity of biochemical or chemical analysis and reduce assay time. Other advantages with these chips include minimized damages to biological molecules and increased reproducibility of assay results.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: October 19, 2004
    Assignee: AVIVA Biosciences
    Inventors: Yuxiang Zhou, Litian Liu, Ken Chen, Depu Chen, Jia Wang, Zewen Liu, Zhimin Tan, Junquan Xu, Xiaoshan Zhu, Xuezhong He, Wenzhang Xie, Zhiming Li, Xiumel Liu
  • Publication number: 20040166502
    Abstract: This invention relates generally to the field of moiety or molecule transfer. In particular, the invention provides a microelectromagnetic dispenser head, which head comprises: a core comprising a magnetizable substance, said core surrounded by a microcoil suitable for transmitting electrical current and generating a magnetic field via said magnetizable substance and said core having a tip suitable for attracting a magnetic or magnetically labeled moiety; and preferably further comprising one or both of the following: i) a shell that substantially shields magnetic field, generated via said microcoil, from the non-tip portion of said core; and/or ii) a cooling means for cooling said tip. Microelectromagnetic dispensers comprising the heads and methods for transferring moieties using the heads and the microelectromagnetic dispensers are also provided.
    Type: Application
    Filed: April 15, 2004
    Publication date: August 26, 2004
    Inventors: Yaming Lai, Yuxiang Zhou, Zhiming Li, Junquan Xu, Litian Liu
  • Publication number: 20040142463
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells from a complex fluid sample. In particular, the enrichment of fetal cells from maternal samples, such as maternal blood samples, can greatly aid in the detection of fetal abnormalities or a variety of genetic conditions. In addition, the present invention recognizes that the enrichment of rare malignant cells from patient samples, can aid in diagnosis, prognosis, and development of therapeutic modalities for patients. The invention includes microfabricated filters for filtering fluid samples and methods of enriching rare cells of fluid samples using microfabricated filters of the present invention. The invention also includes solutions for the selective sedimentation of red blood cells (RBCs) from a blood sample and methods of using selective RBC sedimentation solutions for enriching rare cells of a fluid sample.
    Type: Application
    Filed: November 4, 2003
    Publication date: July 22, 2004
    Inventors: George Walker, Junquan Xu, Douglas Yamanishi, Paul Hujsak, Lei Wu, Mingxian Huang, Guoliang Tao, Sara Snyder, Charina Yap
  • Publication number: 20040077105
    Abstract: The present invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents.
    Type: Application
    Filed: December 1, 2003
    Publication date: April 22, 2004
    Inventors: Lei Wu, Xiaobo Wang, Jing Cheng, Weiping Yang, YuXiang Zhou, LiTian Liu, Junquan Xu
  • Patent number: 6716642
    Abstract: The present invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: April 6, 2004
    Assignee: Aviva Biosciences Corporation
    Inventors: Lei Wu, Xiaobo Wang, Jing Cheng, Weiping Yang, YuXiang Zhou, LiTian Liu, Junquan Xu
  • Patent number: 6703203
    Abstract: This invention relates generally to the field of microarray technology. In particular, the invention provides an integrated microarray device, which device comprises a substrate comprising a plurality of distinct microlocations and a plurality of microarray chips, wherein the number of said microlocations equals to or is more than the number of said microarray chips. In preferred embodiments, the devices also comprises a temperature controller at some or all of the microlocations. The use of the integrated microarray devices for detecting interactions among various moieties in various fields, such as clinical diagnostics, drug discovery, environmental monitoring and forensic analysis, etc., are further provided.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: March 9, 2004
    Assignees: Capital Biochip Company, Ltd., Tsinghua University
    Inventors: Wei Shao, Junquan Xu, Wan-Li Xing, Jing Cheng
  • Patent number: 6630835
    Abstract: The present invention concerns a high throughput electrorotation chip having an array of electrorotation units and methods of use thereof. To make the high throughput electrorotation chip, a plurality of electrorotation units (EU) are fabricated on a substrate or support and each EU is capable of producing a rotating electric field upon the application of an appropriate electrical signal. Exemplary embodiments include a row-column configuration of EUs having four electrode elements realized through two conductive-layers. The electrode elements may be linear, concave, or convex. Thin plates having one or multiple holes are bound to high-throughput electrorotation chips to form assay chambers having one or multiple wells. Particles can be introduced to the wells and electrorotation measurements can be performed on the particles.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: October 7, 2003
    Assignee: Aviva Biosciences Corporation
    Inventors: Jing Cheng, Junquan Xu, Xiaoshan Zhu, Litian Liu, Xiao-Bo Wang, Lei Wu