Patents by Inventor Junwei Bao

Junwei Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230375676
    Abstract: Embodiments discussed herein refer to LiDAR systems to focus on one or more regions of interests within a field of view.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 23, 2023
    Applicant: Innovusion, Inc.
    Inventors: Rui Zhang, Yimin Li, Junwei Bao, Jason Ferns
  • Publication number: 20230366984
    Abstract: A dual emitting co-axial light detection and ranging (LiDAR) system is provided. The LiDAR system comprises a first light source configured to provide a first light beam, a second light source configured to provide a second light beam, a light detector configured to detect return light, one or more optical elements configured to transmit the first light beam to a target in a field of view and to direct return light to the light detector, a first light detector configured to detect the return light and internally-reflected light, a second light detector configured to detect return light formed from the second light beam, and control circuitry configured to mitigate a blind-zone effect based on the detected return light formed from the second light beam. The one or more optical elements are disposed outside of a light path of the second light beam from the second light source.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 16, 2023
    Applicant: Innovusion, Inc.
    Inventors: Haosen Wang, Junwei Bao
  • Publication number: 20230366988
    Abstract: A light detection and ranging (LiDAR) scanning system used with a moveable platform is provided. The LiDAR scanning system comprises one or more light sources; and one or more optical core assemblies optically coupled to the one or more light sources. At least one optical core assembly of the one or more optical core assemblies comprises: an optical core assembly enclosure at least partially disposed in the moveable platform; a plurality of optical polygon elements, and one or more moveable reflective elements. The combination of the plurality of optical polygon elements and the one or more moveable reflective elements form one or more light steering devices operative to scan one or more field-of-views of the LiDAR system. The plurality of optical polygon elements, the one or more moveable reflective elements, and at least one of transmitting and receiving optics are disposed within the optical core assembly enclosure.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 16, 2023
    Inventors: Yimin Li, Yufeng Li, Junwei Bao
  • Publication number: 20230358870
    Abstract: A LiDAR system comprising one or more tunable filters is provided. The one or more tunable filters can be tuned to compensate for wavelength shifts of light signals caused by ambient environmental changes. The LiDAR system includes a light source providing light signals, a signal steering system configured to direct the light signals to a field-of-view, and temperature monitoring circuitry configured to monitor a temperature shift of the light source. The temperature shift corresponds to a wavelength shift of the light signals from a first wavelength value to a second wavelength value. The system further comprises a tunable filter positioned in a receiving system configured to receive return light signals, and a motor configured to rotate the tunable filter by an angle based on the temperature shift such that a passband of the tunable filter matches the second wavelength value.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 9, 2023
    Applicant: Innovusion, Inc.
    Inventors: Yimin Li, Rui Zhang, Junwei Bao
  • Patent number: 11808888
    Abstract: A LiDAR system includes a steering system and a light source. In some cases, the steering system includes a rotatable polygon with reflective sides and/or a dispersion optic. The light source produces light signals, such as light pulses. In some cases, the light sources products light pulses at different incident angles and/or different wavelengths. The steering system scans the light signals. In some cases, the light pulses are scanned based on the wavelength of the light pulses.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 7, 2023
    Assignee: Innovusion, Inc.
    Inventors: Rui Zhang, Yimin Li, Junwei Bao
  • Publication number: 20230350024
    Abstract: Embodiments discussed herein refer to a relatively compact and energy efficient LiDAR system that uses a multi-plane mirror in its scanning system.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Applicant: Innovusion, Inc.
    Inventors: Yimin Li, Rui Zhang, Junwei Bao
  • Patent number: 11796645
    Abstract: Embodiments discussed herein refer to LiDAR systems and methods that tune one or more filters to mitigate background interference. The one or more filters can be tuned to compensate for laser drift such that the narrowest possible bandpass filter can be used, thereby increasing the rejection of background interference.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 24, 2023
    Assignee: INNOVUSION, INC.
    Inventors: Yimin Li, Rui Zhang, Junwei Bao
  • Patent number: 11789132
    Abstract: Embodiments discussed herein refer to LiDAR systems that use avalanche photo diodes for detecting returns of laser pulses. The bias voltage applied to the avalanche photo diode is adjusted to ensure that it operates at desired operating capacity.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: October 17, 2023
    Assignee: Innovusion, Inc.
    Inventors: Yufeng Li, Yimin Li, Rui Zhang, Junwei Bao, Jim Li
  • Patent number: 11789128
    Abstract: A LiDAR system is provided. The LiDAR system comprises a plurality of transmitter channels and a plurality of receiver channels. The plurality of transmitter channels are configured to transmit a plurality of transmission light beams to a field-of-view at a plurality of different transmission angles, which are then scanned to cover the entire field-of-view. The LiDAR system further comprises a collection lens disposed to receive and redirect return light obtained based on the plurality of transmission light beams illuminating one or more objects within the field-of-view. The LiDAR system further comprises a plurality of receiver channels optically coupled to the collection lens. Each of the receiver channels is optically aligned based on a transmission angle of a corresponding transmission light beam. The LiDAR system further comprises a plurality of detector assemblies optically coupled to the plurality of receiver channels.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: October 17, 2023
    Assignee: INNOVUSION, INC.
    Inventors: Yufeng Li, Peng Wan, Randy Xi Li, Yimin Li, Junwei Bao, Rui Zhang
  • Publication number: 20230324526
    Abstract: A method for calculating time-of-flight on a LiDAR system is provided. The method comprises transmitting outgoing light pulses to a beam steering system that redirects the outgoing light pulses to a field of view of the LiDAR system; detecting return pulses corresponding to the outgoing light pulses; obtaining an intensity of a return pulse of the detected return pulses; determining whether the intensity of the return pulse is within an intensity threshold; and based on the determination, selecting a pulse-center based method or a pulse-edge based method for measuring a time-of-flight between the return pulse and the corresponding outgoing light pulse. The time-of-flight is a time lapse between a timing of the return pulse and a timing of the corresponding outgoing light pulse. The method further comprises measuring the time-of-flight based on the selected method.
    Type: Application
    Filed: March 24, 2023
    Publication date: October 12, 2023
    Applicant: Innovusion, Inc.
    Inventors: Peng Wan, Yimin Li, Junwei Bao
  • Patent number: 11782138
    Abstract: Embodiments discussed herein refer to LiDAR systems that accurately observe objects that are relatively close and objects that are relatively far using systems and methods that employ a variable time interval between successive laser pulses and one or more filters.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: October 10, 2023
    Assignee: Innovusion, Inc.
    Inventors: Rui Zhang, Gang Zhou, Yimin Li, Junwei Bao
  • Patent number: 11782132
    Abstract: The present disclosure describes a system and method for coaxial LiDAR scanning. The system includes a first light source configured to provide first light pulses. The system also includes one or more beam steering apparatuses optically coupled to the first light source. Each beam steering apparatus comprises a rotatable concave reflector and a light beam steering device disposed at least partially within the rotatable concave reflector. The combination of the light beam steering device and the rotatable concave reflector, when moving with respect to each other, steers the one or more first light pulses both vertically and horizontally to illuminate an object within a field-of-view; obtain one or more first returning light pulses, the one or more first returning light pulses being generated based on the steered first light pulses illuminating an object within the field-of-view, and redirects the one or more first returning light pulses.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: October 10, 2023
    Assignee: Innovusion, Inc.
    Inventors: Junwei Bao, Yimin Li, Rui Zhang
  • Patent number: 11782131
    Abstract: The present disclosure describes a system and method for coaxial LiDAR scanning. The system includes a first light source configured to provide first light pulses. The system also includes one or more beam steering apparatuses optically coupled to the first light source. Each beam steering apparatus comprises a rotatable concave reflector and a light beam steering device disposed at least partially within the rotatable concave reflector. The combination of the light beam steering device and the rotatable concave reflector, when moving with respect to each other, steers the one or more first light pulses both vertically and horizontally to illuminate an object within a field-of-view; obtain one or more first returning light pulses, the one or more first returning light pulses being generated based on the steered first light pulses illuminating an object within the field-of-view, and redirects the one or more first returning light pulses.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: October 10, 2023
    Assignee: Innovusion, Inc.
    Inventors: Junwei Bao, Yimin Li, Rui Zhang
  • Patent number: 11782136
    Abstract: Embodiments discussed herein refer to LiDAR systems to focus on one or more regions of interests within a field of view.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: October 10, 2023
    Assignee: Innovusion, Inc.
    Inventors: Rui Zhang, Yimin Li, Junwei Bao, Jason Ferns
  • Patent number: 11774565
    Abstract: In accordance with some embodiments, a light detection and ranging (LiDAR) scanning system includes a light source. The light source is configured to transmit a pulse of light. The LiDAR scanning system also includes a beam steering apparatus configured to steer the pulse of light in at least one of vertically and horizontally along an optical path. The beam steering apparatus is further configured to concurrently collect scattered light generated based on the light pulse illuminating an object in the optical path. The scattered light is coaxial or substantially coaxial with the optical path. The LiDAR scanning system further includes a light converging apparatus configured to direct the collected scattered light to a focal point. The LiDAR scanning system further includes a light detector, which is situated substantially at the focal point. In some embodiments, the light detector can include an array of detectors or detector elements.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: October 3, 2023
    Assignee: Innovusion, Inc.
    Inventors: Yimin Li, Junwei Bao
  • Publication number: 20230305160
    Abstract: A system for multimodal detection is provided. The system comprises a light collection and distribution device configured to perform at least one of collecting light signals from a field-of-view (FOV) and distributing the light signals to a plurality of detectors. The light signals have a plurality of wavelengths comprising at least a first wavelength and a second wavelength. The system further comprises a multimodal sensor comprising the plurality of detectors. The plurality of detectors comprises at least a light detector of a first type and a light detector of a second type. The light detector of the first type is configured to detect light signals having a first light characteristic. The light detector of the first type is configured to perform distance measuring based on light signals having the first wavelength. The light detector of the second type is configured to detect light signals having a second light characteristic.
    Type: Application
    Filed: March 17, 2023
    Publication date: September 28, 2023
    Applicant: Innovusion, Inc.
    Inventors: Yimin Li, Haosen Wang, Yang Han, Zhaoqiang Peng, Junwei Bao
  • Publication number: 20230305161
    Abstract: A Light Detection and Ranging (LiDAR) system is disclosed. The LiDAR system comprises a light source configured to provide transmission light signals in a plurality of firing cycles. The LiDAR system comprises a detector configured to detect return signals formed based on the transmission light signals. The LiDAR system comprises an analog-to-digital converter (ADC) configured to obtain ADC data representing the detected return signals. The LiDAR system further comprises one or more processors and memory device, and processor-executable instructions stored in the memory device. The processor-executable instructions can cause the one or more processors to perform: determining a multiple-point time window using the ADC data; based on the multiple-point time window, determining an offset of the ADC data; at least partially correcting the ADC data based on the offset; and providing the corrected ADC data for constructing a point cloud representing an external environment of the LiDAR system.
    Type: Application
    Filed: March 24, 2023
    Publication date: September 28, 2023
    Applicant: Innovusion, Inc.
    Inventors: Xiandong Leng, Junwei Bao
  • Patent number: 11768294
    Abstract: An apparatus of a light detection and ranging (LiDAR) scanning system for at least partial integration with a vehicle is disclosed. The apparatus comprises an optical core assembly including an oscillating reflective element, an optical polygon element, and transmitting and collection optics. The apparatus includes a first exterior surface at least partially bounded by at least a first portion of a vehicle roof or at least a portion of a vehicle windshield. A surface profile of the first exterior surface aligns with a surface profile associated with at least one of the first portion of the vehicle roof or the portion of the vehicle windshield. A combination of the first exterior surface and the one or more additional exterior surfaces form a housing enclosing the optical core assembly including the oscillating reflective element, the optical polygon element, and the transmitting and collection optics.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: September 26, 2023
    Assignee: Innovusion, Inc.
    Inventors: Yufeng Li, Ning-Yi Wang, Haosen Wang, Peng Wan, Yimin Li, Junwei Bao, Gil Salman
  • Publication number: 20230266443
    Abstract: A compact LiDAR device is provided. The compact LiDAR device includes a first mirror disposed to receive one or more light beams and a polygon mirror optically coupled to the first mirror. The polygon mirror comprises a plurality of reflective facets. For at least two of the plurality of reflective facets, each reflective facet is arranged such that: a first edge, a second edge, and a third edge of the reflective facet correspond to a first line, a second line, and a third line; the first line and the second line intersect to form a first internal angle of a plane comprising the reflective facet; and the first line and the third line intersect to form a second internal angle of the plane comprising the reflective facet. The first internal angle is an acute angle; and the second internal angle is an obtuse angle.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 24, 2023
    Applicant: Innovusion, Inc.
    Inventors: Haosen Wang, Ning-Yi Wang, Peng Wan, Yufeng Li, Yimin Li, Junwei Bao
  • Patent number: 11686824
    Abstract: Embodiments discussed herein refer to using LiDAR systems that uses a rotating polygon with a multi-facet mirror. Such multi-facet galvanometer mirror arrangements generate a point map that has reduced curvature.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: June 27, 2023
    Assignee: Innovusion, Inc.
    Inventors: Micah Ledbetter, Junwei Bao, Rui Zhang, Yimin Li