Patents by Inventor Junwen Zhang
Junwen Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11646813Abstract: A digital receiver is configured to process a polarization multiplexed carrier from a communication network. The polarization multiplexed carrier includes a first polarization and a second polarization. The receiver includes a first lane for transporting a first input signal of the first polarization, a second lane for transporting a second input signal of the second polarization, a dynamic phase noise estimation unit disposed within the first lane and configured to determine a phase noise estimate of the first input signal, a first carrier phase recovery portion configured to remove carrier phase noise from the first polarization based on a combination of the first input signal and a function of the determined phase noise estimate, and a second carrier phase recovery portion configured to remove carrier phase noise from the second polarization based on a combination of the second input signal and the function of the determined phase noise estimate.Type: GrantFiled: August 24, 2021Date of Patent: May 9, 2023Assignee: Cable Television Laboratories, Inc.Inventors: Zhensheng Jia, Junwen Zhang, Mu Xu, Haipeng Zhang, Luis Alberto Campos, Curtis Dean Knittle
-
Patent number: 11641293Abstract: A method and apparatus of distortion compensation during data transmission uses an interweaved look-up table (ILUT) to mitigate residual signal distortions in a signal transmitted over a transmission link. The ILUT interweaves states across both an I and a Q tributary to calculate mean error and an extended symbol basis. As a result, the method works particularly well against two-dimensional distortions like nonlinearity, IQ-imbalance, and quadrature error. The method may be used for either pre-compensation when it is combined with k-means clustering in a transmitter or post-compensation when it is combined with maximum likelihood (ML) detection in a receiver.Type: GrantFiled: April 12, 2021Date of Patent: May 2, 2023Assignee: Cable Television Laboratories, Inc.Inventors: Mu Xu, Zhensheng Jia, Junwen Zhang, Haipeng Zhang, Luis Alberto Campos
-
Patent number: 11575448Abstract: An optical network communication system utilizes a coherent passive optical network (PON). The system includes an optical line terminal (OLT) having a downstream transmitter and an upstream receiver system configured for time-wavelength division coherent detection. The system further includes a splitter in operable communication with the OLT, and a plurality of optical network units (ONUs) in operable communication with the splitter. Each of the plurality of ONUs is configured to (i) receive downstream coherent burst signals from the OLT, and (ii) transmit at least one upstream burst signal to the OLT. The upstream receiver system further includes a power control module and a local oscillator (LO) configured to generate an optical LO signal The power control module is configured to adaptively control, in real-time, a power level of the optical LO signal.Type: GrantFiled: August 13, 2021Date of Patent: February 7, 2023Assignee: Cable Television Laboratories, Inc.Inventors: Junwen Zhang, Luis Alberto Campos, Zhensheng Jia
-
Patent number: 11569916Abstract: Provided is a coherent detection implementing apparatus, system and method. The apparatus includes: a first transceiver unit, configured to send an optical signal in a first direction to a second device, wherein the optical signal in the first direction includes a direct current optical signal with a first wavelength and a modulated optical signal with a second wavelength; and configured to receive an optical signal in a second direction from the second device; and a first coherent receiver, connected with the first transceiver unit, and configured to take a part of the direct current optical signal with the first wavelength in the optical signal in the first direction as a Local Oscillator (LO) light for coherent reception, perform coherent frequency mixing between the LO light and the optical signal in the second direction, and demodulate the optical signal in the second direction.Type: GrantFiled: August 27, 2019Date of Patent: January 31, 2023Assignee: ZTE CORPORATIONInventors: Zhijuan Tu, Junwen Zhang, Xingang Huang, Mingsheng Li
-
Patent number: 11563508Abstract: A communications network includes a central communication unit, an optical transport medium, and a plurality of remote radio base stations. The central communication unit generates, within a selected millimeter-wave frequency band, a plurality of adjacent two-tone optical frequency conjugate pairs. Each conjugate pair includes a first optical tone carrying a modulated data signal, and a second optical tone carrying a reference local oscillator signal. The optical transport medium transports the plurality of two-tone conjugate pairs to the plurality of radio base stations, and each base station receives at least one conjugate pair at an optical front end thereof. The optical front end separates the first optical tone from the second optical tone, and converts the first optical tone into a millimeter-wave radio frequency electrical signal.Type: GrantFiled: October 11, 2021Date of Patent: January 24, 2023Assignee: Cable Television Laboratories, Inc.Inventors: Mu Xu, Ruoyu Sun, Balkan Kecicioglu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
-
Patent number: 11546058Abstract: A method for chromatic dispersion pre-compensation in an optical communication network includes (1) distorting an original modulated signal according to an inverse of a transmission function of the optical communication network, to generate a compensated signal, (2) modulating a magnitude of an optical signal in response to a magnitude of the compensated signal, and (3) modulating a phase of the optical signal, after modulating the magnitude of the optical signal, in response to a phase of the compensated signal.Type: GrantFiled: January 29, 2021Date of Patent: January 3, 2023Assignee: Cable Television Laboratories, Inc.Inventors: Mu Xu, Zhensheng Jia, Haipeng Zhang, Luis Alberto Campos, Junwen Zhang
-
Patent number: 11546061Abstract: An injection locked transmitter for an optical communication network includes a master seed laser source input substantially confined to a single longitudinal mode, an input data stream, and a laser injected modulator including at least one slave laser having a resonator frequency that is injection locked to a frequency of the single longitudinal mode of the master seed laser source. The laser injected modulator is configured to receive the master seed laser source input and the input data stream, and output a laser modulated data stream.Type: GrantFiled: March 8, 2021Date of Patent: January 3, 2023Assignee: Cable Television Laboratories, Inc.Inventors: Junwen Zhang, Zhensheng Jia, Luis Alberto Campos, Haipeng Zhang, Mu Xu, Jing Wang, Curtis Dean Knittle, Chuang Zhou
-
Patent number: 11539432Abstract: A skew compensation system for a coherent optical communication network includes a transmitter modulator having a first driver input for receiving a first signal from a first channel, a second driver input for receiving a second signal from a second channel, a source input for receiving a continuous wave source signal, and a modulation output in communication with an optical transport medium of the network. The system further includes a tunable delay line disposed between the second channel and the second driver input for inserting a pre-determined training sequence onto the second signal prior to the second driver input, and a processor for determining a skew amount between the second signal at the second driver input and the first signal at the first driver input, calculating a pre-compensation value corresponding to the skew amount, and reducing the skew amount at the modulation output according to the pre-compensation value.Type: GrantFiled: August 30, 2021Date of Patent: December 27, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Mu Xu, Luis Alberto Campos, Haipeng Zhang, Junwen Zhang, Zhensheng Jia
-
Patent number: 11539441Abstract: A method for laser chirp precompensation includes modulating an amplitude of an optical signal, in response to an amplitude of one of (i) a chirp-compensated signal generated via distortion of an original modulated signal according to an inverse of a chirp-response function of a laser and (ii) a first signal derived from the chirp-compensated signal, to yield an amplitude-modulated optical signal. The method also includes modulating a phase of the amplitude-modulated optical signal in response to a phase of one of (i) the chirp-compensated signal and (ii) a second signal derived from the chirp-compensated signal to yield a chirp-compensated optical signal.Type: GrantFiled: March 31, 2021Date of Patent: December 27, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Mu Xu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos, Curtis D. Knittle
-
Publication number: 20220407602Abstract: An echo cancellation method includes steps of (a) extracting phase-distortion estimates, (b) reconstructing an echo signal, (c) generating a clean signal, and (d) producing a primary signal. Step (a) includes extracting, from a first phase signal, a plurality of phase-distortion estimates, the first phase signal having been estimated from an echo-corrupted signal received at a first coherent transceiver of a coherent optical network. Step (b) includes reconstructing an echo signal from the plurality of phase-distortion estimates and a transmitted signal transmitted by the first coherent transceiver. Step (c) includes generating a clean signal as a difference between the reconstructed echo signal and the first phase signal. Step (d) includes producing a primary signal by mapping each of a plurality of clean-phase estimates of the clean signal to one of a plurality of constellation symbols associated with a modulation scheme of the primary signal.Type: ApplicationFiled: August 22, 2022Publication date: December 22, 2022Inventors: MU XU, ZHENSHENG JIA, JUNWEN ZHANG, HAIPENG ZHANG, LUIS ALBERTO CAMPOS
-
Publication number: 20220337320Abstract: An optical full-field transmitter for an optical communications network includes a primary laser source configured to provide a narrow spectral linewidth for a primary laser signal, and a first intensity modulator in communication with a first amplitude data source. The first intensity modulator is configured to output a first amplitude-modulated optical signal from the laser signal. The transmitter further includes a first phase modulator in communication with a first phase data source and the first amplitude-modulated optical signal. The first phase modulator is configured to output a first two-stage full-field optical signal. The primary laser source has a structure based on a III-V compound semiconductor.Type: ApplicationFiled: June 30, 2022Publication date: October 20, 2022Inventors: HAIPENG ZHANG, JUNWEN ZHANG, MU XU, ZHENSHENG JIA, LUIS ALBERTO CAMPOS
-
Patent number: 11463164Abstract: A method for implementing an out-of-band communication channel in a coherent optical access network includes steps (a)-(e). Step (a) includes separating a MAC-layer signal received from a media access control (MAC) layer into an initial communication-channel signal and an initial data-channel signal. Step (b) includes encoding, using a first signal-coding scheme within a transceiver of a coherent passive optical network (PON), the initial communication-channel signal into a communication-channel signal occupying a first frequency band. Step (c) includes encoding, using a second signal-coding scheme within the transceiver, the initial data-channel signal into a data-channel signal occupying a second frequency band not overlapping the first frequency band. Step (d) includes combining the communication-channel signal and the data-channel signal to yield an analog signal.Type: GrantFiled: July 24, 2021Date of Patent: October 4, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Junwen Zhang, Zhensheng Jia, Curtis D. Knittle, Luis Alberto Campos
-
Patent number: 11424828Abstract: An echo cancellation method includes steps of (a) extracting phase-distortion estimates, (b) reconstructing an echo signal, (c) generating a clean signal, and (d) producing a primary signal. Step (a) includes extracting, from a first phase signal, a plurality of phase-distortion estimates, the first phase signal having been estimated from an echo-corrupted signal received at a first coherent transceiver of a coherent optical network. Step (b) includes reconstructing an echo signal from the plurality of phase-distortion estimates and a transmitted signal transmitted by the first coherent transceiver. Step (c) includes generating a clean signal as a difference between the reconstructed echo signal and the first phase signal. Step (d) includes producing a primary signal by mapping each of a plurality of clean-phase estimates of the clean signal to one of a plurality of constellation symbols associated with a modulation scheme of the primary signal.Type: GrantFiled: March 22, 2021Date of Patent: August 23, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Mu Xu, Zhensheng Jia, Junwen Zhang, Haipeng Zhang, Luis Alberto Campos
-
Patent number: 11418263Abstract: An optical full-field transmitter for an optical communications network includes a primary laser source configured to provide a narrow spectral linewidth for a primary laser signal, and a first intensity modulator in communication with a first amplitude data source. The first intensity modulator is configured to output a first amplitude-modulated optical signal from the laser signal. The transmitter further includes a first phase modulator in communication with a first phase data source and the first amplitude-modulated optical signal. The first phase modulator is configured to output a first two-stage full-field optical signal. The primary laser source has a structure based on a III-V compound semiconductor.Type: GrantFiled: April 22, 2020Date of Patent: August 16, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Haipeng Zhang, Junwen Zhang, Mu Xu, Zhensheng Jia, Luis Alberto Campos
-
Patent number: 11387929Abstract: A digital receiver is configured to process a polarization multiplexed carrier from a communication network. The polarization multiplexed carrier includes a first polarization and a second polarization. The receiver includes a first lane for transporting a first input signal of the first polarization, a second lane for transporting a second input signal of the second polarization, a dynamic phase noise estimation unit disposed within the first lane and configured to determine a phase noise estimate of the first input signal, a first carrier phase recovery portion configured to remove carrier phase noise from the first polarization based on a combination of the first input signal and a function of the determined phase noise estimate, and a second carrier phase recovery portion configured to remove carrier phase noise from the second polarization based on a combination of the second input signal and the function of the determined phase noise estimate.Type: GrantFiled: October 22, 2020Date of Patent: July 12, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Junwen Zhang, Zhensheng Jia, Mu Xu, Haipeng Zhang, Luis Alberto Campos, Curtis Dean Knittle
-
Patent number: 11356196Abstract: A method of communication using a forward error correction (FEC) code includes receiving, at an optical line terminal (OLT), performance capability information provided by an optical network unit (ONU), adjusting, at the OLT, a ratio between an FEC code size and a payload size based on the performance capability information, and informing the ONU of the FEC code size selected based on the ratio such that message exchanges between the ONU and the OLT are performed using the FEC code size to which the ratio is applied.Type: GrantFiled: March 2, 2019Date of Patent: June 7, 2022Assignee: ZTE CorporationInventors: Jun Shan Wey, Junwen Zhang, Zheng Liu, Weiliang Zhang
-
Patent number: 11265099Abstract: A coherent passive optical network includes a downstream transceiver and first and second upstream transceivers in communication with an optical transport medium. The downstream transceiver includes a downstream processor for mapping a downstream data stream to a plurality of sub-bands, and a downstream transmitter for transmitting a downstream optical signal modulated with the plurality of sub-bands. The first upstream transceiver includes a first local oscillator (LO) for tuning a first LO center frequency to a first sub-band of the plurality of sub-bands, and a first downstream receiver for coherently detecting the downstream optical signal within the first sub-band. The second upstream transceiver includes a second downstream receiver configured for coherently detecting the downstream optical signal within a second sub-band of the plurality of sub-bands. The downstream processor dynamically allocates the first and second sub-bands to the first and second transceivers in the time and frequency domains.Type: GrantFiled: May 18, 2020Date of Patent: March 1, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Junwen Zhang, Zhensheng Jia, Mu Xu, Haipeng Zhang, Luis Alberto Campos
-
Patent number: 11245970Abstract: An optical link redundancy architecture includes an optical switch, an optical coupler, and an optical tap detector. The optical switch including a hub-side switch-port, a normal-mode switch-port, and a failover-mode switch-port. The optical coupler includes (i) a normal-mode coupler-port optically coupled to the normal-mode switch-port via a primary-path optical fiber, and (ii) a failover-mode coupler-port optically coupled to the failover-mode switch-port via a backup-path optical fiber. The optical tap detector (i) is optically coupled to the primary-path optical fiber, (ii) includes a monitor port communicatively coupled to the optical switch, and (iii) outputs a tap signal at the monitor port in response to an optical signal propagating in the primary-path optical fiber. The optical switch optically couples the hub-side switch-port to the failover-mode switch-port when the tap signal is less than a threshold value.Type: GrantFiled: January 14, 2021Date of Patent: February 8, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Zhensheng Jia, Junwen Zhang, Mu Xu, Haipeng Zhang, Luis Alberto Campos
-
Patent number: 11223421Abstract: A skew compensation system for a coherent optical communication network includes a transmitter and a receiver in operable communication with an optical transport medium of a coherent optical network. The transmitter includes a first transmitter-side tunable delay line configured to delay transmission of a first signal by a first skew amount, thereby producing a pre-compensated first signal. The receiver includes a first receiver-side tunable delay line configured to delay transmission of the pre-compensated first signal to a digital signal processor (DSP) of the receiver by a second skew amount, thereby producing a final signal that is both pre-compensated and post-compensated (i.e., fully compensated).Type: GrantFiled: February 3, 2021Date of Patent: January 11, 2022Assignee: Cable Television Laboratories, Inc.Inventors: Mu Xu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
-
Publication number: 20210320723Abstract: Provided is a coherent detection implementing apparatus, system and method. The apparatus includes: a first transceiver unit, configured to send an optical signal in a first direction to a second device, wherein the optical signal in the first direction includes a direct current optical signal with a first wavelength and a modulated optical signal with a second wavelength; and configured to receive an optical signal in a second direction from the second device; and a first coherent receiver, connected with the first transceiver unit, and configured to take a part of the direct current optical signal with the first wavelength in the optical signal in the first direction as a Local Oscillator (LO) light for coherent reception, perform coherent frequency mixing between the LO light and the optical signal in the second direction, and demodulate the optical signal in the second direction.Type: ApplicationFiled: August 27, 2019Publication date: October 14, 2021Inventors: Zhijuan TU, Junwen ZHANG, Xingang HUANG, Mingsheng LI