Patents by Inventor Junzhe ZHU

Junzhe ZHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12194672
    Abstract: The invention relates to an ink based on near-infrared light polymerization. The method and technology of direct writing three-dimensional printing belong to the field of material processing technology area. The method is: direct writing nozzles move in three-dimensional space or stationery, the ink is squeezed out of the direct writing nozzle, receiving the near-infrared light irradiation, after curing, complete the three-dimensional object forming and curing. The solidifying time t does not exceed the ratio of near-infrared light diameter dl and the ink extrusion speed vi, that is, t?dl/vi. Since near-infrared light has a better medium mass penetration, can penetrate the structure during molding to promote both internal and external to a higher degree of curing, so as to achieve cross-scale structure 3D printing, and the method provided by the present invention accurately controls solidifying process of the ink and therefore achieve the DIW array 3D structure real-time curing.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: January 14, 2025
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Ren Liu, Yu Liu, Junzhe Zhu
  • Publication number: 20230043266
    Abstract: The invention relates to an ink based on near-infrared light polymerization. The method and technology of direct writing three-dimensional printing belong to the field of material processing technology area. The method is: direct writing nozzles move in three-dimensional space or stationery, the ink is squeezed out of the direct writing nozzle, receiving the near-infrared light irradiation, after curing, complete the three-dimensional object forming and curing. The solidifying time t does not exceed the ratio of near-infrared light diameter d1 and the ink extrusion speed vi, that is, t?d1/vi. Since near-infrared light has a better medium mass penetration, can penetrate the structure during molding to promote both internal and external to a higher degree of curing, so as to achieve cross-scale structure 3D printing, and the method provided by the present invention accurately controls solidifying process of the ink and therefore achieve the DIW array 3D structure real-time curing.
    Type: Application
    Filed: July 9, 2020
    Publication date: February 9, 2023
    Inventors: Ren LIU, Yu LIU, Junzhe ZHU