Patents by Inventor Junzheng Chen

Junzheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11984564
    Abstract: Embodiments described herein relate to electrochemical cells with dendrite prevention mechanisms. In some aspects, an electrochemical cell can include an anode disposed on an anode current collector, a cathode disposed on a cathode current collector, the cathode having a first thickness at a proximal end of the cathode and a second thickness at a distal end of the cathode, the second thickness greater than the first thickness, a first separator disposed on the anode, a second separator disposed on the cathode, an interlayer disposed between the first separator and the second separator, the interlayer including electroactive material and having a proximal end and a distal end, and a power source electrically connected to the proximal end of the cathode and the proximal end of the interlayer, the power source configured to maintain a voltage difference between the cathode and the interlayer below a threshold value.
    Type: Grant
    Filed: December 18, 2023
    Date of Patent: May 14, 2024
    Assignee: 24M Technologies, Inc.
    Inventors: Junzheng Chen, Naoki Ota, Chad Alan Hartzog, Xiaoming Liu, Michelle Robyn Brouwer, Anthony D'Angelo, Daniel Salazar, Timothy Allen Hans, Junhua Song
  • Publication number: 20240106003
    Abstract: Embodiments described herein relate to divided energy electrochemical cells and electrochemical cell systems. Divided energy electrochemical cells and electrochemical cell systems include a first electrochemical cell and a second electrochemical cell connected in parallel. Both electrochemical cells include a cathode disposed on a cathode current collector, an anode disposed on an anode current collector, and a separator disposed between the anode and the cathode. In some embodiments, the first electrochemical cell can have different performance properties from the second electrochemical cell. For example, the first electrochemical cell can have a high energy density while the second electrochemical cell can have a high power density. In some embodiments, the first electrochemical cell can have a battery chemistry, thickness, or any other physical/chemical property different from those properties of the second electrochemical cell.
    Type: Application
    Filed: July 14, 2023
    Publication date: March 28, 2024
    Inventors: Junji ARANAMI, Junzheng CHEN, Naoki OTA
  • Patent number: 11942654
    Abstract: Embodiments described herein relate generally to electrochemical cells having dual electrolytes, systems of such electrochemical cells, and methods for manufacturing the same. In some embodiments, electrochemical cells can include a cathode disposed on a cathode current collector, an anode disposed on an anode current collector, and a separator disposed therebetween. In some embodiments, the separator can include materials that fluidically and/or chemically isolate the anode from the cathode. In some embodiments, the cathode and/or anode can include a slurry of an active material and a conductive material in a liquid electrolyte. In some embodiments, the anode can be fluidically coupled to an anode degassing port. In some embodiments, the cathode can be fluidically coupled to a cathode degassing port.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: March 26, 2024
    Assignee: 24M Technologies, Inc.
    Inventors: Ricardo Bazzarella, Junzheng Chen
  • Publication number: 20240088355
    Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density electrodes including a first electrode material disposed on a current collector and having a first porosity, and a second electrode material disposed on the first electrode material and having a second porosity less than the first porosity. In some embodiments, the second electrode material includes a mixture of an active material and a conductive material in a liquid electrolyte. In some embodiments, the first electrode materials can have a different composition than the second electrode material. In some embodiments, the first electrode material can include a high-capacity material such as tin, silicon antimony, aluminum, or titanium oxide. In some embodiments, a lithium-containing material can be disposed between the first electrode material and the second electrode material.
    Type: Application
    Filed: August 14, 2023
    Publication date: March 14, 2024
    Applicant: 24M Technologies, Inc.
    Inventors: Naoki OTA, Junzheng CHEN, Ricardo BAZZARELLA
  • Publication number: 20240047810
    Abstract: In some aspects a method of monitoring an electrochemical cell stack can include measuring an anode voltage difference between a first anode tab from a plurality of anode tabs and a second anode tab from the plurality of anode tabs, measuring a cathode voltage difference between a first cathode tab from a plurality of cathode tabs and a second cathode tab from the plurality of cathode tabs, and calculating a difference between the cathode voltage and the anode voltage. In some embodiments, the first cathode tab and the first anode tab can be located at a proximal end of the electrochemical cell. In some embodiments, a distance between the first anode tab and the second anode tab is within about 5% of the distance between the first cathode tab and the second cathode tab.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 8, 2024
    Inventors: Chad Alan HARTZOG, Junzheng CHEN
  • Publication number: 20240047832
    Abstract: Embodiments described herein relate to electrochemical cells and multicells. A multicell can include a cell packaging that includes two or more electrochemical cells connected in series internal to the cell packaging. In some aspects, an apparatus includes a plurality of electrochemical cell stacks each including a plurality of electrochemical cells connected in series, a first electrically conductive plate including a first section and a second section, and a second electrically conductive plate. The first section of the first electrically conductive plate is in contact with a first terminal end of a first electrochemical cell stack from the plurality of electrochemical cell stacks. The second section of the first electrically conductive plate is in contact with a first terminal end of a second electrochemical cell stack from the plurality of electrochemical cell stacks.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 8, 2024
    Inventors: Chad Alan HARTZOG, Mark YOUNG, Kenneth Douglas COBB, Junzheng CHEN
  • Publication number: 20240047772
    Abstract: In some aspects, a method of monitoring health of an electrochemical cell can include measuring a first anode voltage at a first anode tab from the plurality of anode tabs and a second anode voltage at a second anode tab from the plurality of anode tabs; measuring a first cathode voltage at a first cathode tab from the plurality of cathode tabs and a second cathode voltage at a second cathode tab from the plurality of cathode tabs; and calculating a first sense voltage, the first sense voltage being a difference between the first cathode voltage and the first anode voltage. In some embodiments, a second sense voltage can be calculated, the second sense voltage being a difference between the second cathode voltage and the second anode voltage. In some embodiments, a difference between the first sense voltage and the second sense voltage can be calculated.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 8, 2024
    Inventors: Chad Alan HARTZOG, Mark YOUNG, Ryan Michael LAWRENCE, Junzheng CHEN, Naoki OTA
  • Publication number: 20240047689
    Abstract: The embodiments described herein involve electrochemical cells that have a heating element integrated into the electrochemical cell. In some aspects, an electrochemical cell comprises an anode current collector, an anode material disposed on the anode current collector, a cathode current collector, a cathode material disposed on a first side of the cathode current collector, a separator disposed between the anode material and the cathode material, and a heating element disposed on a second side of the cathode current collector, the second side opposite the first side. The heating element may include an electrically conductive material and a conductive material and disposed in an insulative material.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 8, 2024
    Inventors: Chad Alan HARTZOG, Mark YOUNG, Kelly LEDBETTER, Junzheng CHEN, Frank Yongzhen FAN, Xiaoming LIU
  • Publication number: 20240039001
    Abstract: Embodiments described herein relate to electrochemical cells and electrodes with reinforced current collectors. In some embodiments, an electrode can include a current collector and an electrode material disposed on a first side of the current collector. A reinforcing layer can be disposed on a second side of the current collector. The reinforcing layer can have a modulus of elasticity sufficient to reduce the amount of stretching incident on the current collector during operation of the electrode. In some embodiments, a polymer film can be disposed on the reinforcing material. In some embodiments, the electrode can further include an adhesive polymer disposed between the reinforcing material and the polymer film. In some embodiments, the reinforcing material can have a thickness of less than about 10 ?m. In some embodiments, the reinforcing layer can include an adhesive polymer.
    Type: Application
    Filed: October 2, 2023
    Publication date: February 1, 2024
    Inventors: Yuki KUSACHI, Naoki OTA, Junzheng CHEN
  • Publication number: 20230411695
    Abstract: Embodiments described herein relate to electrode and electrochemical cell material recycling. Recycling electrode materials can save significant costs, both for quenching chemicals and for the costs of the materials themselves. Separation processes described herein include centrifuge separation, settler separation, flocculant separation, froth flotation, hydro cyclone, vibratory screening, air classification, and magnetic separation. In some embodiments, methods described herein can include any combination of froth flotation, air classification, and magnetic separation. In some embodiments, electrolyte can be separated from active and/or conductive materials via drying, subcritical or supercritical carbon dioxide extraction, solvent mass extraction (e.g., with non-aqueous or aqueous solvents), and/or freeze-drying. By applying these separation processes, high purity raw products can be isolated. These products can be re-used or sold to a third party.
    Type: Application
    Filed: June 21, 2023
    Publication date: December 21, 2023
    Inventors: Kai NARITA, Yuki KUSACHI, Naoki OTA, Junzheng CHEN
  • Publication number: 20230369603
    Abstract: In some aspects, an electrode described herein can include a resin configured to create a rise in impedance, a film coupled to a first side of the resin via an adhesive, a first portion of an electrode material disposed on a second side of the resin, and a second portion of the electrode material disposed on the second side of the resin, wherein the first portion of the current collector material does not physically contact the second portion of the current collector material. In some embodiments, the electrode can further include a first portion of a current collector material disposed between the resin and the first portion of the electrode material and a second portion of the current collector material disposed between the resin and the second portion of the electrode material.
    Type: Application
    Filed: May 10, 2023
    Publication date: November 16, 2023
    Inventors: Naoki OTA, Junzheng CHEN
  • Publication number: 20230369719
    Abstract: Embodiments described herein relate generally to electrochemical cells having dual electrolytes, systems of such electrochemical cells, and methods for manufacturing the same. In some embodiments, electrochemical cells can include a cathode disposed on a cathode current collector, an anode disposed on an anode current collector, and a separator disposed therebetween. In some embodiments, the separator can include materials that fluidically and/or chemically isolate the anode from the cathode. In some embodiments, the cathode and/or anode can include a slurry of an active material and a conductive material in a liquid electrolyte. In some embodiments, the anode can be fluidically coupled to an anode degassing port. In some embodiments, the cathode can be fluidically coupled to a cathode degassing port.
    Type: Application
    Filed: March 10, 2023
    Publication date: November 16, 2023
    Inventors: Ricardo BAZZARELLA, Junzheng CHEN
  • Publication number: 20230352755
    Abstract: Embodiments described herein relate to recycling of electrochemical cell materials. In some aspects, a method can include separating a stack pouch material from an electrochemical cell stack, separating a plurality of unit cells from the electrochemical cell stack into individual unit cells, cutting within a heat seal of a cell pouch of a unit cell from the plurality of unit cells, separating a cathode material and a cathode current collector away from a separator, an anode material, and an anode current collector of the unit cell, placing the cathode material and the cathode current collector in a solvent bath with the cathode current collector facing downward, separating the cathode material from the cathode current collector via an ultrasonic probe, separating solids and liquids of the cathode material, drying the solids of the cathode material, and incorporating the solids of the cathode material into a new cathode mixture.
    Type: Application
    Filed: March 30, 2023
    Publication date: November 2, 2023
    Inventors: Ruben D. ARAGON, Matthew R. TYLER, Kypros D. PANTELI, Hasan SIDDIQUI, Evan RUGEN, Gregory MEHOS, Junzheng CHEN, Ashley MORISHIGE, Christian EBNER
  • Publication number: 20230335748
    Abstract: Embodiments described herein relate generally to electrochemical cells with dendrite prevention mechanisms. In some embodiments, an electrochemical cell can include an anode disposed on an anode current collector, a cathode disposed on a cathode current collector, and a separator disposed between the anode and the cathode. In some embodiments, at least one of the anode or the cathode includes a first portion and a second portion, the second portion configured to prevent dendrite formation around an outside edge of the anode and/or the cathode. In some embodiments, the second portion can include an electroactive material disposed on the anode current collector around an outside edge of the anode current collector. In some embodiments, the second portion can include an electroactive material disposed on a pouch material around an outside edge of the anode current collector.
    Type: Application
    Filed: April 28, 2023
    Publication date: October 19, 2023
    Inventors: Junzheng CHEN, Naoki OTA, Xiaoming LIU
  • Patent number: 11764353
    Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density electrodes including a first electrode material disposed on a current collector and having a first porosity, and a second electrode material disposed on the first electrode material and having a second porosity less than the first porosity. In some embodiments, the second electrode material includes a mixture of an active material and a conductive material in a liquid electrolyte. In some embodiments, the first electrode materials can have a different composition than the second electrode material. In some embodiments, the first electrode material can include a high-capacity material such as tin, silicon antimony, aluminum, or titanium oxide. In some embodiments, a lithium-containing material can be disposed between the first electrode material and the second electrode material.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: September 19, 2023
    Assignee: 24M Technologies, Inc.
    Inventors: Naoki Ota, Junzheng Chen, Ricardo Bazzarella
  • Publication number: 20230282906
    Abstract: Embodiments described herein relate to electrochemical cells and electrochemical cell systems with thermal insulation systems, and methods of producing the same. An electrochemical cell can include an anode material disposed on an anode current collector, a cathode material disposed on a cathode current collector, a separator disposed between the anode material and the cathode material, and an insulating structure disposed around and containing the anode material, anode current collector, cathode material, cathode current collector, and the separator. The anode material and/or the cathode material includes a semi-solid electrode material. The semi-solid electrode material includes an active material and a conductive material in a liquid electrolyte. The liquid electrolyte has an electrolyte salt concentration of at least about 2.0 M. In some embodiments, the insulating structure includes a frame with a first wall and a second wall disposed therein.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 7, 2023
    Inventors: Junzheng CHEN, Naoki OTA, Ryan Michael LAWRENCE, Jeffry DISKO, Chad Alan HARTZOG
  • Patent number: 11749804
    Abstract: Embodiments described herein relate to electrochemical cells with one or more electrodes coupled directly to a film material, and methods of making the same. In some embodiments, an electrochemical cell includes a first electrode material disposed on a first current collector, wherein the first current collector is coupled to a first non-conductive film. In some embodiments, a first tab is coupled to the first current collector. The electrochemical cell further includes a second electrode material capable of taking up or releasing ions during operation of the electrochemical cell. The second electrode material is coupled directly to a second non-conductive film. A second tab is electronically coupled to the second electrode material. A separator is disposed between the first electrode material and the second electrode material. In some embodiments, the second tab can be coupled directly to the second electrode material.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: September 5, 2023
    Assignee: 24M Technologies, Inc.
    Inventors: Junzheng Chen, Landon Oakes, Naoki Ota
  • Patent number: 11742525
    Abstract: Embodiments described herein relate to divided energy electrochemical cells and electrochemical cell systems. Divided energy electrochemical cells and electrochemical cell systems include a first electrochemical cell and a second electrochemical cell connected in parallel. Both electrochemical cells include a cathode disposed on a cathode current collector, an anode disposed on an anode current collector, and a separator disposed between the anode and the cathode. In some embodiments, the first electrochemical cell can have different performance properties from the second electrochemical cell. For example, the first electrochemical cell can have a high energy density while the second electrochemical cell can have a high power density. In some embodiments, the first electrochemical cell can have a battery chemistry, thickness, or any other physical/chemical property different from those properties of the second electrochemical cell.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: August 29, 2023
    Assignees: 24M Technologies, Inc., Kyocera Corporation
    Inventors: Junji Aranami, Junzheng Chen, Naoki Ota
  • Publication number: 20230238562
    Abstract: Embodiments described herein relate to electrochemical cells and production thereof under high pressure. In some aspects, a method of producing an electrochemical cell can include disposing a cathode material onto a cathode current collector to form a cathode, disposing an anode material onto an anode current collector to form an anode, and disposing the anode onto the cathode in an assembly jig with a separator positioned between the anode and the cathode to form an electrochemical cell, the assembly jig applying a force to the electrochemical cell such that a pressure in the cathode material is at least about 3,500 kPa. In some embodiments, the cathode material can be a first cathode material, and the method can further include disposing a second cathode material onto the first cathode material. In some embodiments, the first cathode material can include silicon. In some embodiments, the second cathode material can include graphite.
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Yuki KUSACHI, Junzheng CHEN, Naoki OTA, Bradley Richard MILESON, Matthew Bonju LIM, Ryan Michael LAWRENCE
  • Publication number: 20230178707
    Abstract: Embodiments described herein relate generally to apparatuses and processes for forming semi-solid electrodes having high active solids loading by removing excess electrolyte. In some embodiments, the semi-solid electrode material can be formed by mixing an active material and, optionally, a conductive material in a liquid electrolyte to form a suspension. In some embodiments, the semi-solid electrode material can be disposed onto a current collector to form an intermediate electrode. In some embodiments, the semi-solid electrode material can have a first composition in which the ratio of electrolyte to active material is between about 10:1 and about 1:1. In some embodiments, a method for converting the semi-solid electrode material from the first composition into the second composition includes removing a portion of the electrolyte from the semi-solid electrode material.
    Type: Application
    Filed: August 25, 2022
    Publication date: June 8, 2023
    Inventors: Junji ARANAMI, Raymond ZAGARS, Naoki OTA, Junzheng CHEN, Ricardo BAZZARELLA