Patents by Inventor Juraj Topolancik

Juraj Topolancik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10837057
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 17, 2020
    Assignee: Illumina, Inc.
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Publication number: 20200158687
    Abstract: Embodiments of the present technology may allow for the analysis of molecules by tunneling recognition at a tunneling junction. A tunneling junction of the present technology can include an insulating layer between two electrodes. A voltage may be applied to the electrodes. When a molecule makes contact with both electrodes, the molecule allows current to tunnel through the molecule. The characteristics of the current may aid in identifying a portion of the molecule, for example, a particular nucleotide or base present in a nucleic acid molecule. Methods and systems for analysis of molecules are described.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Inventors: Yann ASTIER, Juraj TOPOLANCIK
  • Patent number: 10591440
    Abstract: Embodiments of the present technology include a system for analyzing a molecule. The system may include a device. The device includes a first conductive element, a second conductive element, and an insulating layer. The insulating layer may be tapered in a direction to reach a minimum thickness at a first end of the device. The insulating layer is disposed between the first conductive element and the second conductive element. The device may include a voltage source in electrical communication with the first conductive element and the second conductive element. The device may also include an electrical meter in electrical communication with the voltage source, the first conductive element, and the second conductive element.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: March 17, 2020
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Yann Astier, Juraj Topolancik
  • Publication number: 20200048705
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Publication number: 20190390267
    Abstract: Molecules may be analyzed (e.g., sequencing of nucleic acid molecules) by tunneling recognition at a tunneling junction. Embodiments of the present invention may allow detecting individual nucleotides and the sequencing of a nucleic acid molecule using a tunneling junction. By labeling a specific nucleotide with a moiety, tunneling junctions may generate a signal with a suitable signal-to-noise ratio. The tunneling recognition uses a tunneling current that is mostly through the moiety rather than mostly through the nucleotide or a portion of the molecule of interest. Because a single nucleotide can be detected with a signal with a suitable signal-to-noise ratio resulting from the tunneling current passing through the moiety, embodiments of the present invention may allow for fast detection of nucleotides using a tunneling current.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Inventors: Yann ASTIER, Juraj TOPOLANCIK, Hannes KUCHELMEISTER, Frank BERGMANN, Dieter HEINDL, Nikolaus Klaus-Peter STEINGELE
  • Patent number: 10472675
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: November 12, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Publication number: 20190310241
    Abstract: Embodiments of the present technology may allow for improved and more reliable tunneling junctions and methods of fabricating the tunneling junctions. Electrical shorting issues may be reduced by depositing electrodes without a sharp sidewall and corner but instead with a sloping or curved sidewall. Layers deposited on top of the electrode layer may then be able to adequately cover the underlying electrode layer and therefore reduce or prevent shorting. Additionally, two insulating materials may be used as the dielectric layer may reduce the possibility of incomplete coverage and the possibility of flaking. Furthermore, the electrodes may be tapered from the contact area to the junction area to provide a thin electrode where the hole is to be patterned, while the thicker contact area reduces sheet resistance. The electrode may also be patterned to be wider at the contact area and narrower at the junction area.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 10, 2019
    Inventors: Juraj TOPOLANCIK, Zsolt MAJZIK, Flint MITCHELL
  • Publication number: 20190170904
    Abstract: A device for luminescent imaging includes an array of imaging pixels, a photonic structure over the array of imaging pixels, and an array of features over the photonic structure. A first feature of the array of features is over a first pixel of the array of imaging pixels, and a second feature of the array of features is over the first pixel and spatially displaced from the first feature. A first luminophore is within or over the first feature, and a second luminophore is within or over the second feature. The device includes a radiation source to generate first photons having a first characteristic at a first time, and generate second photons having a second characteristic at a second time. The first pixel selectively receives luminescence emitted by the first and second luminophores responsive to the first photons at the first time and second photons at the second time, respectively.
    Type: Application
    Filed: April 21, 2017
    Publication date: June 6, 2019
    Inventors: Juraj TOPOLANCIK, Cheng Frank ZHONG
  • Publication number: 20190024163
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 24, 2019
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Publication number: 20180305682
    Abstract: The present invention relates to a microfluidic device for extracting and isolating DNA from cells. The device includes a support having an inlet port for receiving a sample containing a cell, an outlet port for dispensing DNA isolated from the cell, and a microfluidic channel disposed within the support and extending from the inlet port to the outlet port. The microfluidic channel includes a micropillar array, an inflow channel disposed between the inlet port and the micropillar array, and an outflow channel disposed between the micropillar array and the outlet port. The micropillar array includes micropillars spatially configured to entrap, by size exclusion, the cell, to immobilize DNA released from the cell, and to maintain the immobilized DNA in elongated or non-elongated form when hydrodynamic force is applied to the microfluidic channel. Systems and methods of making and using the device are also provided herein.
    Type: Application
    Filed: March 26, 2018
    Publication date: October 25, 2018
    Applicant: CORNELL UNIVERSITY
    Inventors: Harold G. CRAIGHEAD, Juraj TOPOLANCIK, Harvey TIAN, Christopher WALLIN
  • Patent number: 10059992
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined though at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice. The device further can include a second material having a second refractive index that is different than the first refractive index.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: August 28, 2018
    Assignee: ILLUMINA, INC.
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Patent number: 9926552
    Abstract: The present invention relates to a microfluidic device for extracting and isolating DNA from cells. The device includes a support having an inlet port for receiving a sample containing a cell, an outlet port for dispensing DNA isolated from the cell, and a microfluidic channel disposed within the support and extending from the inlet port to the outlet port. The microfluidic channel includes a micropillar array, an inflow channel disposed between the inlet port and the micropillar array, and an outflow channel disposed between the micropillar array and the outlet port. The micropillar array includes micropillars spatially configured to entrap, by size exclusion, the cell, to immobilize DNA released from the cell, and to maintain the immobilized DNA in elongated or non-elongated form when hydrodynamic force is applied to the microfluidic channel. Systems and methods of making and using the device are also provided herein.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: March 27, 2018
    Assignee: CORNELL UNIVERSITY
    Inventors: Harold G. Craighead, Juraj Topolancik, Harvey Tian, Christopher Wallin
  • Publication number: 20180031523
    Abstract: Embodiments of the present technology include a system for analyzing a molecule. The system may include a device. The device includes a first conductive element, a second conductive element, and an insulating layer. The insulating layer may be tapered in a direction to reach a minimum thickness at a first end of the device. The insulating layer is disposed between the first conductive element and the second conductive element. The device may include a voltage source in electrical communication with the first conductive element and the second conductive element. The device may also include an electrical meter in electrical communication with the voltage source, the first conductive element, and the second conductive element.
    Type: Application
    Filed: July 27, 2017
    Publication date: February 1, 2018
    Inventors: Yann Astier, Juraj Topolancik
  • Publication number: 20170275690
    Abstract: Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined though at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice. The device further can include a second material having a second refractive index that is different than the first refractive index.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 28, 2017
    Inventors: Dietrich Dehlinger, Cheng Frank Zhong, Juraj Topolancik
  • Patent number: 9431043
    Abstract: Embodiments disclosed herein generally relate to a magnetic write head including a media facing surface and a surface opposite the media facing surface. The magnetic write head further includes a reflector extending from the surface opposite the media facing surface toward the media facing surface. A semiconductor laser diode gain region protrudes out of the surface opposite the media facing surface, and the reflector helps optimizing the optical energy generated in the semiconductor laser diode gain region to be a single mode over a large current and temperature range.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: August 30, 2016
    Assignee: HGST NETHERLANDS B.V.
    Inventors: Thomas Dudley Boone, Jr., Juraj Topolancik
  • Publication number: 20150380031
    Abstract: Embodiments disclosed herein generally relate to a magnetic write head including a media facing surface and a surface opposite the media facing surface. The magnetic write head further includes a reflector extending from the surface opposite the media facing surface toward the media facing surface. A semiconductor laser diode gain region protrudes out of the surface opposite the media facing surface, and the reflector helps optimizing the optical energy generated in the semiconductor laser diode gain region to be a single mode over a large current and temperature range.
    Type: Application
    Filed: September 4, 2015
    Publication date: December 31, 2015
    Inventors: Thomas Dudley BOONE, JR., Juraj TOPOLANCIK
  • Patent number: 9147415
    Abstract: The present invention generally relates to a HAMR head having not only a tapered core for the SSC, but additionally a secondary confinement material in the cladding surrounding the core taper. The secondary confinement material prevents diverging light from the laser diode from spreading so that the light is coupled into the core of the SSC. The secondary confinement material is a symmetric structure that surrounds the core of the SSC on all sides so that high conversion efficiency is achieved for short taper lengths.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 29, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Thomas William Clinton, Barry C. Stipe, Juraj Topolancik
  • Patent number: 9129634
    Abstract: Embodiments disclosed herein generally relate to a magnetic write head including a media facing surface and a surface opposite the media facing surface. The magnetic write head further includes a reflector extending from the surface opposite the media facing surface toward the media facing surface. A semiconductor laser diode gain region protrudes out of the surface opposite the media facing surface, and the reflector helps optimizing the optical energy generated in the semiconductor laser diode gain region to be a single mode over a large current and temperature range.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: September 8, 2015
    Assignee: HGST NETHERLANDS B.V.
    Inventors: Thomas Dudley Boone, Jr., Juraj Topolancik
  • Publication number: 20150179197
    Abstract: The present invention generally relates to a HAMR head having not only a tapered core for the SSC, but additionally a secondary confinement material in the cladding surrounding the core taper. The secondary confinement material prevents diverging light from the laser diode from spreading so that the light is coupled into the core of the SSC. The secondary confinement material is a symmetric structure that surrounds the core of the SSC on all sides so that high conversion efficiency is achieved for short taper lengths.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Thomas William CLINTON, Barry C. STIPE, Juraj TOPOLANCIK
  • Publication number: 20150121685
    Abstract: Embodiments of the present invention generally relate to an optical metrology system and methods of using the optical metrology system. The optical metrology system has a linear optical array including a plurality of optical components. One end of the linear optical array is configured to receive a confined beam. At various stages of the fabrication process, the performance of the actual optical components used in HAMR devices is evaluated based on the performance of the optical metrology system.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Thomas William CLINTON, Juraj TOPOLANCIK