Patents by Inventor Jurgen Gieshoff

Jurgen Gieshoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11014077
    Abstract: The invention relates to a catalyst comprising a small-pore zeolite that contains iron and copper and has a maximum ring size of eight tetrahedral atoms, characterized in that the channel width of the small-pore zeolite amounts to >3.8 ? (0.38 nm) in at least one dimension.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: May 25, 2021
    Assignee: UMICORE AG & CO. KG
    Inventors: Fei Wen, Nicola Soeger, Jürgen Gieshoff
  • Publication number: 20190134615
    Abstract: The invention relates to a catalyst comprising a small-pore zeolite that contains iron and copper and has a maximum ring size of eight tetrahedral atoms, characterized in that the channel width of the small-pore zeolite amounts to >3.8 ? (0.38 nm) in at least one dimension.
    Type: Application
    Filed: May 2, 2017
    Publication date: May 9, 2019
    Applicant: UMICORE AG & CO. KG
    Inventors: Fei WEN, Nicola SOEGER, Jürgen GIESHOFF
  • Patent number: 8341938
    Abstract: When a nitrogen oxide storage catalyst is being regenerated, the regeneration may be terminated for example as a result of a premature load change in the engine, which can lead to incomplete emptying of the storage catalyst. The residual filling level which remains in the catalyst following an incomplete regeneration of this nature is used as the starting value for calculation of the filling level during the next storage phase. After incomplete regeneration, the nitrogen oxide conversion rate is initially greater than would be expected, on account of the residual filling level. By taking this increased conversion rate into account when calculating the filling level during the storage phase, it is possible to further improve the accuracy of the calculation.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: January 1, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Martin Votsmeier, Juliane Theis, Ulrich Goebel, Jürgen Gieshoff, Thomas Kreuzer
  • Patent number: 8136349
    Abstract: The present invention describes an exhaust-gas purification system for an internal combustion engine made of an oxidation catalyst arranged close to the engine, a subsequent hydrocarbon adsorber and a particulate filter arranged downstream thereof and provided with another oxidation catalyst. The oxidation catalyst ensures that emission limits with respect to carbon monoxide and hydrocarbons are satisfied in normal driving mode. During operating states with exhaust-gas temperatures below about 200° C., the oxidation catalyst can no longer oxidize carbon monoxide and hydrocarbons. Instead, the hydrocarbons are adsorbed by the hydrocarbon adsorber during these operating phases. In order to initiate the periodical regeneration of the particulate filter, the exhaustgas temperature of the internal combustion engine is raised by engine modifications.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: March 20, 2012
    Assignee: Umicore Galvanotechnik GmbH
    Inventors: Jürgen Gieshoff, Martin Votsmeier, Frank-Walter Schütze, Marcus Pfeifer, Egbert Lox, Thomas Kreuzer
  • Publication number: 20100307136
    Abstract: When a nitrogen oxide storage catalyst is being regenerated, the regeneration may be terminated for example as a result of a premature load change in the engine, which can lead to incomplete emptying of the storage catalyst. The residual filling level which remains in the catalyst following an incomplete regeneration of this nature is used as the starting value for calculation of the filling level during the next storage phase. After incomplete regeneration, the nitrogen oxide conversion rate is initially greater than would be expected, on account of the residual filling level. By taking this increased conversion rate into account when calculating the filling level during the storage phase, it is possible to further improve the accuracy of the calculation.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 9, 2010
    Inventors: Martin VOTSMEIER, Juliane Kluge, Ulrich Goebel, Jürgen Gieshoff, Thomas Kreuzer
  • Patent number: 7799298
    Abstract: The invention relates to a catalyst arrangement for purifying the exhaust gases of internal combustion engines operated under lean conditions. It is proposed that a thinwalled, porous carrier be coated on one side with a nitrogen oxide storage catalyst and on the other side with an SCR catalyst. When the exhaust gas is passed through the catalytic coatings and the support material, a significant improvement in the nitrogen oxide conversion is achieved compared to a series arrangement of the catalysts on separate carriers. Wall flow filters have been found to be useful as thin-walled carriers.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: September 21, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Marcus Pfeifer, Nicola Soeger, Yvonne Demel, Tobias Kuhl, Paul Christian Spurk, Jürgen Gieshoff, Egbert Lox, Thomas Kreuzer
  • Patent number: 7737081
    Abstract: This invention relates to a method of operating a catalyst for treating the exhaust gas of an internal combustion engine, the catalyst comprising, in addition to catalytically active noble metals, also storage components for storing hydrocarbons. During engine operating phases at low exhaust-gas temperatures, such a catalyst stores the hydrocarbons contained in the exhaust gas without burning them. When the exhaust-gas temperature rises, these hydrocarbons are desorbed again and then oxidized at the catalytically active noble metals. This process can lead to uncontrolled, vigorous combustion of the hydrocarbons stored on the catalyst and, therefore, damage to the catalyst. According to the invention, this damage is avoided by continuously calculating the respective loading of the storage components with hydrocarbons and repeatedly regenerating the storage components depending on the loading by temporarily raising the exhaust-gas temperature before damage to the catalyst can occur.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: June 15, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Martin Votsmeier, Frank Schütze, Stephan Malmberg, Jürgen Gieshoff, Egbert Lox, Thomas Kreuzer
  • Patent number: 7735312
    Abstract: When a nitrogen oxide storage catalyst is being regenerated, the regeneration may be terminated for example as a result of a premature load change in the engine, which can lead to incomplete emptying of the storage catalyst. The residual filling level which remains in the catalyst following an incomplete regeneration of this nature is used as the starting value for calculation of the filling level during the next storage phase. After incomplete regeneration, the nitrogen oxide conversion rate is initially greater than would be expected, on account of the residual filling level. By taking this increased conversion rate into account when calculating the filling level during the storage phase, it is possible to further improve the accuracy of the calculation.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: June 15, 2010
    Assignee: Umicor AG & Co. KG
    Inventors: Martin Votsmeier, Juliane Kluge, Ulrich Goebel, Jürgen Gieshoff, Thomas Kreuzer
  • Patent number: 7700070
    Abstract: The present invention relates to the catalytic conversion of hydrocarbons for generating a gas that is rich in hydrogen, to the use of said apparatus and to a process for generating hydrogen. The apparatus comprises a reforming catalyst (5), as well as a means (8) for supplying hydrocarbons to the catalyst. The reforming catalyst is arranged in an exhaust pipe (3) through which the exhaust gases of combustion processes are passed.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: April 20, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Hartmut Finkbeiner, Jürgen Gieshoff
  • Publication number: 20090285736
    Abstract: The invention provides a process for reducing the amounts of carbon monoxide, hydrocarbons and soot particles in the lean exhaust gas from an internal combustion engine using a particle filter, wherein the soot particles have a soot ignition temperature TZ and the particle filter is regenerated from time to time by raising the temperature of the particle filter to above the soot ignition temperature and burning the soot particles, wherein the temperature of the filter is increased to the temperature required to initiate soot ignition by burning additional fuel on the catalytic coating when the exhaust gas back pressure reaches a predetermined value. The process is characterised in that the particle filter is provided with a catalytic coating comprising a first group of components for reducing the ignition temperature of soot, said first group of components contains at least one oxygen storage component and at least one platinum group metal selected from the group consisting of platinum, palladium and rhodium.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 19, 2009
    Inventors: Adolf SCHAFER-SINDLINGER, Marcus Pfeifer, Ulrich Hackbarth, Wilfried Muller, Egbert Lox, Thomas Kreuzer, Roger Staab, Michael Hoffmann, Jurgen Gieshoff
  • Patent number: 7563744
    Abstract: The present invention relates to a catalyst for the purification of exhaust gases from an internal combustion engine, which comprises a catalytically active coating on an inert ceramic or metal honeycomb body, said coating comprising at least one platinum group metal selected from the group consisting of platinum, palladium, rhodium and iridium on a fine, oxidic support material. As an oxidic support material, the catalyst comprises a low-porosity material on the basis of silicon dioxide that comprises aggregates of essentially spherical primary particles having an average particle diameter of between 7 and 60 nm.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: July 21, 2009
    Assignee: Umicore AG & Co. KG
    Inventors: Harald Klein, Ulrich Neuhausen, Egbert Lox, Jürgen Gieshoff, Thomas Kreuzer
  • Patent number: 7431895
    Abstract: An exhaust gas treatment unit for the selective catalytic reduction of nitrogen oxides under lean exhaust gas conditions which contains at least one catalyst with catalytically active components for selective catalytic reduction (SCR components). The exhaust gas treatment unit is characterised in that the catalyst also contains, in addition to SCR components, at least one storage component for nitrogen oxides (NOx components).
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: October 7, 2008
    Assignee: Umicore AG & Co. KG
    Inventors: Marcus Pfeifer, Paul Spurk, Jürgen Gieshoff, Yvonne Demel, Egbert Lox, Thomas Kreuzer
  • Patent number: 7313911
    Abstract: The present invention relates to a method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine by selective catalytic reduction (SCR) using ammonia. The exhaust gas is routed first over a platinum-containing pre-catalyst and then over an SCR catalyst. The ammonia needed for the selective catalytic reduction is added to the exhaust gas upstream of the pre-catalyst at an exhaust-gas temperature below 250° C., while it is supplied to the exhaust gas between the pre-catalyst and the SCR catalyst at an exhaust gas temperature above 150° C. By adopting this procedure, a very large temperature range for the selective catalytic reduction with high nitrogen conversion rates is obtained.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: January 1, 2008
    Assignee: Umicore AG & Co. KG
    Inventors: Markus Pfeifer, Barry Van Setten, Paul Spurk, Yvonne Demel, Tobias Kuhl, Jürgen Gieshoff, Egbert Lox, Thomas Kreuzer
  • Patent number: 7310940
    Abstract: The invention relates to a method and an apparatus of operating a drive system comprising an engine and an exhaust gas purification unit containing a catalyst, where the engine emits an exhaust gas having an exhaust gas temperature and the catalyst has a catalytic activity for the purification of the exhaust gas. In the method, an aging-induced decrease in the catalytic activity of the catalyst is compensated at least part of the time by increasing the exhaust gas temperature of the engine.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: December 25, 2007
    Assignee: Umicore AG & Co. KG
    Inventors: Jürgen Gieshoff, Martin Votsmeir, Stephan Malmberg, Egbert Lox, Thomas Kreuzer
  • Publication number: 20070199303
    Abstract: When a nitrogen oxide storage catalyst is being regenerated, the regeneration may be terminated for example as a result of a premature load change in the engine, which can lead to incomplete emptying of the storage catalyst. The residual filling level which remains in the catalyst following an incomplete regeneration of this nature is used as the starting value for calculation of the filling level during the next storage phase. After incomplete regeneration, the nitrogen oxide conversion rate is initially greater than would be expected, on account of the residual filling level. By taking this increased conversion rate into account when calculating the filling level during the storage phase, it is possible to further improve the accuracy of the calculation.
    Type: Application
    Filed: February 4, 2005
    Publication date: August 30, 2007
    Applicant: Umicore AG & Co. KG
    Inventors: Martin Votsmeier, Juliane Kluge, Ulrich Goebel, Jurgen Gieshoff, Thomas Kreuzer
  • Publication number: 20070166827
    Abstract: This invention relates to a method of operating a catalyst for treating the exhaust gas of an internal combustion engine, the catalyst comprising, in addition to catalytically active noble metals, also storage components for storing hydrocarbons. During engine operating phases at low exhaust-gas temperatures, such a catalyst stores the hydrocarbons contained in the exhaust gas without burning them. When the exhaust-gas temperature rises, these hydrocarbons are desorbed again and then oxidized at the catalytically active noble metals. This process can lead to uncontrolled, vigorous combustion of the hydrocarbons stored on the catalyst and, therefore, damage to the catalyst. According to the invention, this damage is avoided by continuously calculating the respective loading of the storage components with hydrocarbons and repeatedly regenerating the storage components depending on the loading by temporarily raising the exhaust-gas temperature before damage to the catalyst can occur.
    Type: Application
    Filed: May 12, 2004
    Publication date: July 19, 2007
    Applicant: UMICORE AG & CO., KG
    Inventors: Martin Votsmeier, Frank Schutze, Stephan Malmberg, Jurgen Gieshoff, Egbert Lox, Thomas Kreuzer
  • Publication number: 20070119152
    Abstract: The present invention describes an exhaust-gas purification system for an internal combustion engine made of an oxidation catalyst arranged close to the engine, a subsequent hydrocarbon adsorber and a particulate filter arranged downstream thereof and provided with another oxidation catalyst. The oxidation catalyst ensures that emission limits with respect to carbon monoxide and hydrocarbons are satisfied in normal driving mode. During operating states with exhaust-gas temperatures below about 200° C., the oxidation catalyst can no longer oxidize carbon monoxide and hydrocarbons. Instead, the hydrocarbons are adsorbed by the hydrocarbon adsorber during these operating phases. In order to initiate the periodical regeneration of the particulate filter, the exhaustgas temperature of the internal combustion engine is raised by engine modifications.
    Type: Application
    Filed: May 12, 2004
    Publication date: May 31, 2007
    Applicant: UMICORE AG & CO. KG
    Inventors: Jurgen Gieshoff, Martin Votsmeier, Frank-Walter Schutze, Marcus Pfeifer, Egbert Lox, Thomas Kreuzer
  • Publication number: 20070110650
    Abstract: The invention relates to a catalyst arrangement for purifying the exhaust gases of internal combustion engines operated under lean conditions. It is proposed that a thinwalled, porous carrier be coated on one side with a nitrogen oxide storage catalyst and on the other side with an SCR catalyst. When the exhaust gas is passed through the catalytic coatings and the support material, a significant improvement in the nitrogen oxide conversion is achieved compared to a series arrangement of the catalysts on separate carriers. Wall flow filters have been found to be useful as thin-walled carriers.
    Type: Application
    Filed: July 29, 2004
    Publication date: May 17, 2007
    Applicant: Umicore AG & CO. KG
    Inventors: Marcus Pfeifer, Nicola Soeger, Yvonne Demel, Tobias Kuhl, Paul Spurk, Jurgen Gieshoff, Egbert Lox, Thomas Kreuzer
  • Publication number: 20070089403
    Abstract: The present invention relates to an exhaust-gas purification system for the selective catalytic reduction of nitrogen oxides. The system includes at least one catalyst having catalytically active components for the selective catalytic reduction (SCR components). An NOx storage catalyst (5) is arranged upstream of the SCR catalyst (3) in the exhaust-gas purification system. For performing the selective catalytic reduction, metering means (8) for supplying a compound decomposable into ammonia is provided between the NOx storage catalyst and the SCR catalyst (3). At low exhaust-gas temperatures, the NOx storage catalyst (5) adsorbs the nitrogen oxides contained in the exhaust gas and desorbs them only at rising exhaust-gas temperatures, so that they can afterwards be converted by the SCR catalyst (3) which is active then. This results in an altogether improved conversion rate for the nitrogen oxides.
    Type: Application
    Filed: February 26, 2004
    Publication date: April 26, 2007
    Applicant: UMICORE AG & CO. KG
    Inventors: Markus Pfeifer, Barry Van Setten, Paul Spurk, Jurgen Gieshoff, Egbert Lox, Thomas Kreuzer
  • Publication number: 20070051096
    Abstract: The present invention relates to a method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine by selective catalytic reduction (SCR) using ammonia. The exhaust gas is routed first over a platinum-containing pre-catalyst and then over an SCR catalyst. The ammonia needed for the selective catalytic reduction is added to the exhaust gas upstream of the pre-catalyst at an exhaust-gas temperature below 250° C., while it is supplied to the exhaust gas between the pre-catalyst and the SCR catalyst at an exhaust gas temperature above 150° C. By adopting this procedure, a very large temperature range for the selective catalytic reduction with high nitrogen conversion rates is obtained.
    Type: Application
    Filed: February 26, 2004
    Publication date: March 8, 2007
    Applicant: UMICORE AG CO. KG
    Inventors: Markus Pfeifer, Barry Van Setten, Paul Spurk, Yvonne Demel, Tobias Kuhl, Jurgen Gieshoff, Egbert Lox, Thomas Kreuzer