Patents by Inventor Jurriaan Schmitz

Jurriaan Schmitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8848194
    Abstract: An integrated plasmonic sensing device is described wherein the integrated device comprises: at least one optical source comprising a first conductive layer and a second conductive layer, and a optical active layer between at least part of said first and second conductive layers; at least one nanocavity extending through said first and second conductive layers and said optical active layer, wherein said optical source is configured to generate surface plasmon modes suitable for optically activating one or more resonances in said nanocavity; and, at least one optical detector comprising at least one detection region formed in said substrate in the vicinity of said nanocavity resonator, wherein said optical detector is configured to sense optically activated resonances in said nanocavity.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 30, 2014
    Assignee: Integrated Plasmonics Corporation
    Inventors: Robert Walters, Jurriaan Schmitz, Albert Polman, Ihor Brunets
  • Publication number: 20130148126
    Abstract: An integrated plasmonic sensing device is described wherein the integrated device comprises: at least one optical source comprising a first conductive layer and a second conductive layer, and a optical active layer between at least part of said first and second conductive layers; at least one nanocavity extending through said first and second conductive layers and said optical active layer, wherein said optical source is configured to generate surface plasmon modes suitable for optically activating one or more resonances in said nanocavity; and, at least one optical detector comprising at least one detection region formed in said substrate in the vicinity of said nanocavity resonator, wherein said optical detector is configured to sense optically activated resonances in said nanocavity.
    Type: Application
    Filed: April 6, 2011
    Publication date: June 13, 2013
    Applicant: Integrated Plasmonics Corporation
    Inventors: Robert Walters, Jurriaan Schmitz, Albert Polman, Ihor Brunets
  • Patent number: 7262460
    Abstract: A vertical insulated gate transistor is manufactured by providing a trench (26) extending through a source layer (8) and a channel layer (6) towards a drain layer (2). A spacer etch is used to form gate portions (20) along the trench side walls, a dielectric material (30) is filled into the trench between the sidewalls gate portions (20), and a gate electrical connection layer (30) is formed at the top of the trench electrically connecting the gate portions (20) across the trench.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: August 28, 2007
    Assignee: NXP B.V.
    Inventors: Jurriaan Schmitz, Raymond J. E. Hueting, Erwin A. Hijzen, Andreas H. Montree, Michael A. A. In't Zandt, Gerrit E. J. Koops
  • Patent number: 7157349
    Abstract: A method of manufacturing a semiconductor device comprising a silicon body (1) having a surface (4) provided with field isolation regions (2) enclosing active regions (3). In this method, on the surface of the silicon body there is formed an auxiliary layer (5) of a material on which, during an oxidation treatment, a thicker layer of silicon oxide is formed than on the silicon of the silicon body. Here, an auxiliary layer comprising silicon and germanium is formed on the surface, said auxiliary layer preferably being a layer of SixGe1?x?yCy, where 0.70<x<0.95 and y<0.05. Next, at the location of the field isolation regions to be formed, windows (9) are formed in the auxiliary layer and trenches (11) are formed in the silicon body. Next, on the walls (12) of the trenches, a silicon oxide layer (13) is provided and on the walls (10) of the windows a silicon oxide layer (14) is provided, both being formed by an oxidation treatment. The auxiliary layer is not oxidized throughout its thickness.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 2, 2007
    Assignee: NXP B.V.
    Inventors: Jurriaan Schmitz, Claire Ravit, Rita Victoire Theodosie Rooyackers
  • Publication number: 20060049453
    Abstract: A vertical insulated gate transistor is manufactured by providing a trench (26) extending through a source layer (8) and a channel layer (6) towards a drain layer (2). A spacer etch is used to form gate portions (20) along the trench side walls, a dielectric material (30) is filled into the trench between the sidewalls gate portions (20), and a gate electrical connection layer (30) is formed at the top of the trench electrically connecting the gate portions (20) across the trench.
    Type: Application
    Filed: December 8, 2003
    Publication date: March 9, 2006
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Jurriaan Schmitz, Raymond Hueting, Erwin Hijzen, Andreas Montree, Michael In't Zandt, Gerrit Koops
  • Publication number: 20060030118
    Abstract: A method of manufacturing a semiconductor device comprising a silicon body (1) having a surface (4) provided with field isolation regions (2) enclosing active regions (3). In this method, on the surface of the silicon body there is formed an auxiliary layer (5) of a material on which, during an oxidation treatment, a thicker layer of silicon oxide is formed than on the silicon of the silicon body. Here, an auxiliary layer comprising silicon and germanium is formed on the surface, said auxiliary layer preferably being a layer of SixGe1-x-yCy, where 0.70<x<0.95 and y<0.05. Next, at the location of the field isolation regions to be formed, windows (9) are formed in the auxiliary layer and trenches (11) are formed in the silicon body. Next, on the walls (12) of the trenches, a silicon oxide layer (13) is provided and on the walls (10) of the windows a silicon oxide layer (14) is provided, both being formed by an oxidation treatment. The auxiliary layer is not oxidized throughout its thickness.
    Type: Application
    Filed: September 30, 2003
    Publication date: February 9, 2006
    Inventors: Jurriaan Schmitz, Clarie Ravit, Rita Rooyachkers
  • Patent number: 6969645
    Abstract: A method of manufacturing a semiconductor device comprising a non-volatile memory with memory cells (Mij) including a select transistor (T1) with a select gate (1) and including a memory transistor (T2) with a floating gate (2) and a control gate (3). In a semiconductor body (10), active semiconductor regions are formed which are mutually insulated by field oxide regions (12). Next, the surface (11) is provided with a gate oxide layer (14) and a first layer of a conductive material wherein the select gate (1) is etched. Subsequently, the walls of the select gate extending perpendicularly to the surface are provided with an isolating material (17). The gate oxide next to the select gate is replaced by a layer of tunnel oxide (18). Next, a second layer of a conductive material (21), an interlayer dielectric (25) and a third layer of a conductive material (26) are deposited. The control gate (3) extending above and next to the select gate is formed in the third layer.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: November 29, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jurriaan Schmitz, Franciscus Petrus Widdershoven, Michiel Slotboom
  • Publication number: 20050029572
    Abstract: Fabrication of a semiconductor device comprising a compact cellon a semiconductor substrate (3) including at least two adjacent elements separated by a spacing, the elements being defined from a layer stack that includes an isolation layer(4) on the substrate (3) and a poly-Si layer (5) on the isolation layer (4), wherein the fabrication includes:—depositing on the layer stack a mask (M1; M3) including at least one vertical isolation layer (10), a first (9) and a second (11) silicon nitride layer, the vertical isolation layer (10) separating the first (9) and second (11) silicon nitride layers and being located where the spacing is to be formed;—performing a first selective etch on the vertical isolation layer (10) to form a narrow slit (A);—performing a stack etch including a first stack etch process for selectively etching the poly-Si layer (5), using thenarrow slit (A) to define the location for the first stack etch process and the spacing between the elements.
    Type: Application
    Filed: December 20, 2002
    Publication date: February 10, 2005
    Inventor: Jurriaan Schmitz
  • Publication number: 20040175885
    Abstract: A method of manufacturing a semiconductor device comprising a non-volatile memory with memory cells (Mij) including a select transistor (T1) with a select gate (1) and including a memory transistor (T2) with a floating gate (2) and a control gate (3). In a semiconductor body (10), active semiconductor regions are formed which are mutually insulated by field oxide regions (12). Next, the surface (11) is provided with a gate oxide layer (14) and a first layer of a conductive material wherein the select gate (1) is etched. Subsequently, the walls of the select gate extending perpendicularly to the surface are provided with an isolating material (17). The gate oxide next to the select gate is replaced by a layer of tunnel oxide (18). Next, a second layer of a conductive material (21), an interlayer dielectric (25) and a third layer of a conductive material (26) are deposited. The control gate (3) extending above and next to the select gate is formed in the third layer.
    Type: Application
    Filed: December 22, 2003
    Publication date: September 9, 2004
    Inventors: Jurriaan Schmitz, Franciscus Petrus Widdershoven, Michiel Slotboom
  • Patent number: 6743682
    Abstract: In a method of manufacturing a semiconductor device comprising a semiconductor body 1 which is provided at a surface 2 with a transistor comprising a gate structure 21, a patterned layer 10 is applied defining the area of the gate structure 21. Subsequently, a dielectric layer 18 is applied in such a way, that the thickness of the dielectric layer 18 next to the patterned layer 10 is substantially equally large or larger than the height of the patterned layer 10, which dielectric layer 18 is removed over part of its thickness until the patterned layer 10 is exposed. Then, the patterned layer 10 is subjected to a material removing treatment, thereby forming a recess 19 in the dielectric layer 18, and a contact window 28,29 is provided in the dielectric layer.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: June 1, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Pierre Hermanus Woerlee, Jurriaan Schmitz, Andreas Hubertus Montree
  • Patent number: 6656760
    Abstract: A detector and a camera system for electromagnetic radiation being integrated in a solid state substrate are disclosed. Said substrate comprises a first region of a first conductivity and a second region of a second conductivity, said first region being adjacent to said second region, and said first and second region forming a detection junction, at least part of said junction being substantially orthogonal with respect to the plane of the surface of the substrate above said detection junction. The camera system comprises a configuration of pixels in an imaging sensor being integrated in a solid state substrate, essentially each of the pixels comprising a region of a first conductivity type being at least partly surrounded by a region of a second conductivity type, thereby forming a junction region, and wherein the region of the first conductivity type includes at least one contact area.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: December 2, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jurriaan Schmitz, Edwin Roks, Daniel Wilhelmus Elisabeth Verbugt
  • Patent number: 6476430
    Abstract: In transistors with sub-micron channels, short-channel effects, such as a lowering of the threshold voltage, are usually suppressed by means of a halo (or pocket) implant in the source/drain regions, which operation is performed jointly with the LDD implantation. The halo implant, however, decreases the analog performance of transistors. To combine suppression of short-channel effects with a high analog performance, it is proposed to provide only transistors T1, which are not intended for analog functions with the halo implant (16), and to mask the analog transistors T2 with a mask (15) against the halo implant. To avoid short-channel effects in T2, this transistor is provided with a channel whose length is larger than that of transistor T1.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: November 5, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jurriaan Schmitz, Andreas H. Montree
  • Patent number: 6472706
    Abstract: A semiconductor device comprising a non-volatile memory cell, for storing at least one bit, in a semiconductor substrate (1) having, in the substrate, a source region (6), a drain region (7) and a channel region (10) between the source (6) and drain (7) regions, and having, on top of the substrate, a floating gate (9) separated from the channel region (10) by a floating gate insulating layer, a select gate (11) adjacent to the floating gate and separated from the channel region by a select gate insulating layer (8), and a control gate (5) separated from the floating gate (9) by a control gate insulating layer, the floating gate being a non-conducting charge trapping dielectric layer (9).
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: October 29, 2002
    Assignee: Koninklijke Philips Electronics NV
    Inventors: Franciscus Petrus Widdershoven, Jurriaan Schmitz
  • Publication number: 20020094647
    Abstract: In a method of manufacturing a semiconductor device comprising a semiconductor body 1 which is provided at a surface 2 with a transistor comprising a gate structure 21, a patterned layer 10 is applied defining the area of the gate structure 21. Subsequently, a dielectric layer 18 is applied in such a way, that the thickness of the dielectric layer 18 next to the patterned layer 10 is substantially equally large or larger than the height of the patterned layer 10, which dielectric layer 18 is removed over part of its thickness until the patterned layer 10 is exposed. Then, the patterned layer 10 is subjected to a material removing treatment, thereby forming a recess 19 in the dielectric layer 18, and a contact window 28,29 is provided in the dielectric layer.
    Type: Application
    Filed: March 18, 2002
    Publication date: July 18, 2002
    Applicant: U.S. PHILIPS CORPORATION
    Inventors: Pierre Hermanus Woerlee, Jurriaan Schmitz, Andreas Hubertus Montree
  • Patent number: 6406963
    Abstract: In a method of manufacturing a semiconductor device comprising a semiconductor body 1 which is provided at a surface 2 with a transistor comprising a gate structure 21, a patterned layer 10 is applied defining the area of the gate structure 21. Subsequently, a dielectric layer 18 is applied in such a way, that the thickness of the dielectric layer 18 next to the patterned layer 10 is substantially equally large or larger than the height of the patterned layer 10, which dielectric layer 18 is removed over part of its thickness until the patterned layer 10 is exposed. Then, the patterned layer 10 is subjected to a material removing treatment, thereby forming a recess 19 in the dielectric layer 18, and a contact window 28,29 is provided in the dielectric layer.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: June 18, 2002
    Assignee: Koninklijke Philips Electronics N.A.
    Inventors: Pierre Hermanus Woerlee, Jurriaan Schmitz, Andreas Hubertus Montree
  • Patent number: 6403426
    Abstract: In a method of manufacturing a semiconductor device comprising a transistor having a gate insulated from a channel region at a surface of a semiconductor body by a gate dielectric, an active region 4 of a first conductivity type is defined at the surface 2 of the semiconductor body 1, and a patterned layer is applied consisting of refractory material, which patterned layer defines the area of the planned gate to be provided at a later stage of the process and acts as a mask during the formation of a source zone 11 and a drain zone 12 of a second conductivity type in the semiconductor body 1. In a next step, a dielectric layer 14 is provided in a thickness which is sufficiently large to cover the patterned layer, which dielectric layer 14 is removed over part of its thickness by means of a material removing treatment until the patterned layer is exposed, which patterned layer is removed, thereby forming a recess 15 in the dielectric layer 14 at the area of the planned gate.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: June 11, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Andreas H. Montree, Jurriaan Schmitz, Pierre H. Woerlee
  • Patent number: 6368915
    Abstract: In a method of manufacturing a semiconductor device comprising a non-volatile memory element, an active region 4 of a first conductivity type is defined at a surface 2 of a semiconductor body 1, and a patterned layer is applied, which patterned layer acts as a mask during the formation of a source zone 11 and a drain zone 12 of a second conductivity type in the semiconductor body 1. Then, a dielectric layer 14 is provided in a thickness which is sufficiently large to cover the patterned layer, which dielectric layer 14 is removed over part of its thickness by means of a material removing treatment until the patterned layer is exposed, which patterned layer is removed, thereby forming a recess in the dielectric layer 14.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: April 9, 2002
    Assignee: U.S. Philips Corporation
    Inventors: Andreas H. Montree, Jurriaan Schmitz, Pierre H. Woerlee
  • Publication number: 20020005545
    Abstract: A semiconductor device comprising a non-volatile memory cell, for storing at least one bit, in a semiconductor substrate (1) having, in the substrate, a source region (6), a drain region (7) and a channel region (10) between the source (6) and drain (7) regions, and having, on top of the substrate, a floating gate (9) separated from the channel region (10) by a floating gate insulating layer, a select gate (11) adjacent to the floating gate and separated from the channel region by a select gate insulating layer (8), and a control gate (5) separated from the floating gate (9) by a control gate insulating layer, the floating gate being a non-conducting charge trapping dielectric layer (9).
    Type: Application
    Filed: July 11, 2001
    Publication date: January 17, 2002
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Franciscus Petrus Widdershoven, Jurriaan Schmitz
  • Publication number: 20010055832
    Abstract: A detector and a camera system for electromagnetic radiation being integrated in a solid state substrate are disclosed. Said substrate comprises a first region of a first conductivity and a second region of a second conductivity, said first region being adjacent to said second region, and said first and second region forming a detection junction, at least part of said junction being substantially orthogonal with respect to the plane of the surface of the substrate above said detection junction. The camera system comprises a configuration of pixels in an imaging sensor being integrated in a solid state substrate, essentially each of the pixels comprising a region of a first conductivity type being at least partly surrounded by a region of a second conductivity type, thereby forming a junction region, and wherein the region of the first conductivity type includes at least one contact area.
    Type: Application
    Filed: March 9, 2001
    Publication date: December 27, 2001
    Inventors: Jurriaan Schmitz, Edwin Roks, Daniel Wilhelmus Elisabeth Verbugt
  • Patent number: 6303453
    Abstract: The invention relates to a method of manufacturing a (horizontal) MOST, as used, for example, in (BI)CMOS ICs. On either side of a gate electrode (2), the surface of a silicon substrate (10, 11) which is positioned above a gate oxide (IA) is provided with a dielectric layer (1B) at the location where a source (3) and drain (4) are to be formed, which dielectric layer includes a thermal oxide layer (1B) to be formed as the starting layer. The source (3) and/or drain (4) is/are provided with LDD regions (3A, 4A) and the remaining parts (3B, 4B) of the source (3) and drain (4) are provided by an ion implantation (I1) of doping atoms into the silicon substrate (10, 11). A MOST obtained in this way still suffers from so-called short-channel effects, resulting in a substantial dependence of the threshold voltage upon the length of the gate electrode (2), in particular in the case of very short lengths of the gate electrode (2).
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: October 16, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Jurriaan Schmitz, Pierre H. Woerlee