Patents by Inventor Jussi Sipila
Jussi Sipila has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9957586Abstract: The invention relates to a method of using a suspension smelting furnace and to a suspension smelting furnace and to a concentrate burner (4). The concentrate burner (4) comprises a first gas supply device (12) for feeding a first gas (5) into the reaction shaft (2) and a second gas supply device (18) for feeding a second gas (16) into the reaction shaft (2). The first gas supply device (12) comprises a first annular discharge opening (14), which which is arranged concentrically with the mouth (8) of a feeder pipe (7), so that the first annular discharge opening (14) surrounds the feeder pipe (7). The second gas supply device (18) comprises a second annular discharge opening (17), which is arranged concentrically with the mouth (8) of the feeder pipe (7), so that the second annular discharge opening (17) surrounds the feeder pipe (7) opening (14).Type: GrantFiled: March 24, 2015Date of Patent: May 1, 2018Assignee: Outotec OyjInventors: Jussi Sipilä, Markku Lahtinen, Peter Björklund, Kaarle Peltoniemi, Tapio Ahokainen, Lauri P. Pesonen, Kaj Eklund
-
Patent number: 9322078Abstract: The invention relates to a method of feeding a fuel gas into the reaction shaft of a suspension smelting furnace and to a concentrate burner for feeding a reaction gas and fine solid matter into the reaction shaft of the suspension smelting furnace. In the method, fuel gas (16) is fed by the concentrate burner (4) to constitute part of the mixture formed by the pulverous solid matter (6) and the reaction gas (5), so that a mixture containing the pulverous solid matter (6), reaction gas (5) and fuel gas (6) is formed in the reaction shaft (2). The concentrate burner (4) comprises fuel gas feeding equipment (15) for adding the fuel gas (16) to constitute part of the mixture that is formed by fine solid matter (6) and reaction gas (5).Type: GrantFiled: October 19, 2010Date of Patent: April 26, 2016Assignee: Outotec OyjInventor: Jussi Sipilä
-
Publication number: 20150197828Abstract: The invention relates to a method of using a suspension smelting furnace and to a suspension smelting furnace and to a concentrate burner (4). The concentrate burner (4) comprises a first gas supply device (12) for feeding a first gas (5) into the reaction shaft (2) and a second gas supply device (18) for feeding a second gas (16) into the reaction shaft (2). The first gas supply device (12) comprises a first annular discharge opening (14), which which is arranged concentrically with the mouth (8) of a feeder pipe (7), so that the first annular discharge opening (14) surrounds the feeder pipe (7). The second gas supply device (18) comprises a second annular discharge opening (17), which is arranged concentrically with the mouth (8) of the feeder pipe (7), so that the second annular discharge opening (17) surrounds the feeder pipe (7) opening (14).Type: ApplicationFiled: March 24, 2015Publication date: July 16, 2015Applicant: OUTOTEC OYJInventors: Jussi SIPILÄ, Markku LAHTINEN, Peter BJÖRKLUND, Kaarle PELTONIEMI, Tapio AHOKAINEN, Lauri P. PESONEN, Kaj EKLUND
-
Patent number: 9034243Abstract: The invention relates to a method of using a suspension smelting furnace and to a suspension smelting furnace and to a concentrate burner (4). The concentrate burner (4) comprises a first gas supply device (12) for feeding a first gas (5) into the reaction shaft (2) and a second gas supply device (18) for feeding a second gas (16) into the reaction shaft (2). The first gas supply device (12) comprises a first annular discharge opening (14), which is arranged concentrically with the mouth (8) of a feeder pipe (7), so that the first annular discharge opening (14) surrounds the feeder pipe (7). The second gas supply device (18) comprises a second annular discharge opening (17), which is arranged concentrically with the mouth (8) of the feeder pipe (7), so that the second annular discharge opening (17) surrounds the feeder pipe (7) opening (14).Type: GrantFiled: October 19, 2010Date of Patent: May 19, 2015Assignee: Outotec OyjInventors: Jussi Sipilä, Markku Lahtinen, Peter Björklund, Kaarle Peltoniemi, Tapio Ahokainen, Lauri P. Pesonen, Kaj Eklund
-
Patent number: 8986421Abstract: The invention relates to a method of controlling the thermal balance of the reaction shaft of a suspension smelting furnace and to a concentrate burner for feeding reaction gas and pulverous solid mater into the reaction shaft of the suspension smelting furnace. In the method, endothermic material (16) is fed by the concentrate burner (4) to constitute part of the mixture formed from the powdery solid matter (6) and reaction gas (5), so that a mixture containing the powdery solid matter (6), reaction gas (5) and endothermic material (6) is formed in the reaction shaft (2). The concentrate burner (4) comprises cooling agent feeding equipment (15) for adding the endothermic material (16) to constitute part of the mixture, which is formed from the pulverous solid matter (6) that discharges from the orifice (8) of the feeder pipe and the reaction gas (5) that discharges through the annular discharge orifice (14).Type: GrantFiled: October 19, 2010Date of Patent: March 24, 2015Assignee: Outotec OyjInventors: Jussi Sipilä, Markku Lahtinen, Peter Björklund, Kaarle Peltoniemi, Tapio Ahokainen, Lauri P. Pesonen
-
Patent number: 8889061Abstract: A concentrate burner of a suspension smelting or suspension converting furnace includes a reaction gas feed, a powdery solid matter feed and a concentrate distributor. An arrangement for feeding powdery solid matter to the concentrate burner includes a first powdery solid matter discharge pipe for feeding powdery solid matter into the powdery solid matter feed of the concentrate burner. The first powdery solid matter discharge pipe is provided with a first partition, which divides solid matter, for dividing the first powdery solid matter discharge pipe into two essentially similar discharge pipe parts. The powdery solid matter feed of the concentrate burner comprise an annular concentrate discharge channel that surrounds the concentrate distributor of the concentrate burner. Each discharge pipe part of the first powdery solid matter discharge pipe is at least partly divided into two discharge pipe portions by a second partition.Type: GrantFiled: December 10, 2010Date of Patent: November 18, 2014Assignee: Outotec OyjInventors: Jussi Sipilä, Peter Björklund, Kaarle Peltoniemi, Lauri P. Pesonen
-
Publication number: 20130331555Abstract: Technology for separating lignin from alkaline solutions which arise in production of cellulose is presented. Isolated lignin can be applied, for instance, for production of carbon fibre, adhesives and binding materials, antioxidants and organic chemicals. Starting materials are non-woody plant materials, from which lignin is dissolved by sulphur free alkaline solutions at temperatures below 130° C. Lignin is precipitated by acid, and purified by hydrolyzing hemicellulose by acid or by enzymatic reactions or a combination of these. Lignin separated has a closely similar structure as lignin in plant material, and its content of functional atom groups can be controlled by changes in processing conditions.Type: ApplicationFiled: March 6, 2012Publication date: December 12, 2013Inventors: Yrjö Mälkki, Jussi Sipilä
-
Publication number: 20120248664Abstract: The object of the invention is an arrangement for feeding powdery solid matter into a concentrate burner (2) of a suspension smelting or suspension converting furnace (1). The concentrate burner (2) comprises reaction gas feeding means (6), powdery solid matter feeding means (3) and a concentrate distributor (7). The arrangement comprises a first powdery solid matter discharge pipe (8) for feeding powdery solid matter into the powdery solid matter feeding means (3) of the concentrate burner (2). The first powdery solid matter discharge pipe (8) is provided with a first partition (10). which divides solid matter, for dividing the first powdery solid matter discharge pipe (8) into two essentially similar discharge pipe parts (II). The powdery solid matter feeding means (3) of the concentrate burner (2) comprise an annular concentrate discharge channel (4) that surrounds the concentrate distributor (7) of the concentrate burner.Type: ApplicationFiled: December 10, 2010Publication date: October 4, 2012Applicant: OUTOTEC OYJInventors: Jussi Sipilä, Peter Björklund, Kaarle Peltoniemi, Lauri P. Pesonen
-
Publication number: 20120228811Abstract: The invention relates to a method of feeding a fuel gas into the reaction shaft of a suspension smelting furnace and to a concentrate burner for feeding a reaction gas and fine solid matter into the reaction shaft of the suspension smelting furnace. In the method, fuel gas (16) is fed by the concentrate burner (4) to constitute part of the mixture formed by the pulverous solid matter (6) and the reaction gas (5), so that a mixture containing the pulverous solid matter (6), reaction gas (5) and fuel gas (6) is formed in the reaction shaft (2). The concentrate burner (4) comprises fuel gas feeding equipment (15) for adding the fuel gas (16) to constitute part of the mixture that is formed by fine solid matter (6) and reaction gas (5).Type: ApplicationFiled: October 19, 2010Publication date: September 13, 2012Applicant: OUTOTEC OYJInventor: Jussi Sipilä
-
Publication number: 20120204679Abstract: The invention relates to a method of controlling the thermal balance of the reaction shaft of a suspension smelting furnace and to a concentrate burner for feeding reaction gas and pulverous solid mater into the reaction shaft of the suspension smelting furnace. In the method, endothermic material (16) is fed by the concentrate burner (4) to constitute part of the mixture formed from the powdery solid matter (6) and reaction gas (5), so that a mixture containing the powdery solid matter (6), reaction gas (5) and endothermic material (6) is formed in the reaction shaft (2). The concentrate burner (4) comprises cooling agent feeding equipment (15) for adding the endothermic material (16) to constitute part of the mixture, which is formed from the pulverous solid matter (6) that discharges from the orifice (8) of the feeder pipe and the reaction gas (5) that discharges through the annular discharge orifice (14).Type: ApplicationFiled: October 19, 2010Publication date: August 16, 2012Applicant: OUTOTEC OYJInventors: Jussi Sipilä, Markku Lahtinen, Peter Björklund, Kaarle Peltoniemi, Tapio Ahokainen, Lauri P. Pesonen
-
Publication number: 20120200012Abstract: The invention relates to a method of using a suspension smelting furnace and to a suspension smelting furnace and to a concentrate burner (4). The concentrate burner (4) comprises a first gas supply device (12) for feeding a first gas (5) into the reaction shaft (2) and a second gas supply device (18) for feeding a second gas (16) into the reaction shaft (2). The first gas supply device (12) comprises a first annular discharge opening (14), which which is arranged concentrically with the mouth (8) of a feeder pipe (7), so that the first annular discharge opening (14) surrounds the feeder pipe (7). The second gas supply device (18) comprises a second annular discharge opening (17), which is arranged concentrically with the mouth (8) of the feeder pipe (7), so that the second annular discharge opening (17) surrounds the feeder pipe (7) opening (14).Type: ApplicationFiled: October 19, 2010Publication date: August 9, 2012Applicant: OUTOTEC OYJInventors: Jussi Sipilä, Markku Lahtinen, Peter Björklund, Kaarle Peltoniemi, Tapio Ahokainen, Lauri P. Pesonen, Kaj Eklund
-
Patent number: 8206643Abstract: A concentrate burner for feeding a pulverous concentrate mixture and reaction gas into a reaction shaft of a flash smelting furnace. The concentrate burner includes a feeder pipe for feeding a concentrate mixture into the reaction shaft and a dispersing device for directing dispersing gas to the concentrate mixture flowing around the dispersing device. For feeding the reaction gas into the reaction shaft, a gas supply device is provided which includes a reaction gas chamber for mixing the reaction gas with the concentrate mixture, and for directing the concentrate mixture to the side by the dispersing gas. The reaction gas chamber includes a turbulent flow chamber, to which an inlet channel opens tangentially for directing the reaction gas to the reaction gas chamber in a tangential direction. In the inlet channel, an adjusting member is arranged for adjusting the cross-sectional area of the reaction gas flow.Type: GrantFiled: September 1, 2008Date of Patent: June 26, 2012Assignee: Outotec OyjInventors: Jussi Sipilä, Kaarle Peltoniemi, Peter Björklund, Jiliang Xia
-
Publication number: 20100207307Abstract: A concentrate burner for feeding a pulverous concentrate mixture and reaction gas into the reaction shaft (1) of a flash smelting furnace. The concentrate burner includes a feeder pipe (2) for feeding the concentrate mixture into the reaction shaft (1), the orifice (3) of the feeder pipe opening to the reaction shaft, a dispersing device (4), which is arranged concentrically inside the feeder pipe (2) and which extends to a distance from the orifice inside the reaction shaft (1) for directing dispersing gas to the concentrate mixture flowing around the dispersing device.Type: ApplicationFiled: September 1, 2008Publication date: August 19, 2010Applicant: OUTOTEC OYJInventors: Jussi Sipilä, Kaarle Peltoniemi, Peter Björklund, Jiliang Xia
-
Patent number: 7700036Abstract: The invention relates to a launder construction for the conveyance of molten metal. The metal flows in the lower part of the launder construction in a channel defined by a refractory mass, the launder being heat-insulated so that, in operating conditions, the metal forms a solid zone in the porous refractory mass. The essential features of the launder construction include a cover part that is provided with electrical resistors, ensuring that the metal remains melted and the launder sufficiently hot throughout the process, and a gas burner that prevents the metal from cooling under the effect of the gas flowing in the launder channel.Type: GrantFiled: December 29, 2005Date of Patent: April 20, 2010Assignee: Outotec OyjInventors: Jussi Sipila, Juha Lumppio
-
Publication number: 20040231059Abstract: The invention relates to a method for preparing absorptive substances from lignocellulosic materials, such as straw of cereal plants, peels or hulls of cereal grains, plant leaves, bagasse, jute or wood chips. The method according to the invention comprises as its essential stages an alkaline pretreatment for partial removal of lignin and hemicellulose, an initiation treatment for forming reactive radicals, addition of at least one monomer and cross-linking agent, and finally a polymerization. As a preceding treatment, washing with water for removal of extraneous matter and/or disturbing components can be included, and potentially a wet milling or another defibration for increasing the reactive surface. For initiation, an oxidative chemical such as hydrogen peroxide is suitable, for the monomer especially compounds containing a vinyl group, such as acrylic acid.Type: ApplicationFiled: May 24, 2004Publication date: November 25, 2004Inventors: Yrjo Malkki, Merja Marjut Toikka, Antti Jussi Sipila
-
Patent number: 6238457Abstract: The invention relates to a method for adjusting the flow velocity of reaction gas and the dispersion air of pulverous solids when feeding reaction gas and finely divided solids to the reaction shaft (6) of a suspension smelting furnace for creating a controlled and adjustable suspension. Reaction gas (8) is fed into the furnace from around a finely divided solid material flow (5), so that said solids are distributed with an orientation towards the reaction gas by means of dispersion air. The flow velocity and discharge direction of the reaction gas to the reaction shaft are adjusted steplessly by means of a specially shaped adjusting member (10) moving vertically in the reaction gas channel (13) and by means of a specially shaped cooling block (12) surrounding the reaction gas channel (13) and located on the arch of the reaction shaft.Type: GrantFiled: June 1, 1999Date of Patent: May 29, 2001Assignee: Outokumpu OyjInventors: Ismo Holmi, Tuomo Jokinen, Launo Lilja, Jussi Sipilä, Pekka Tuokkola, Vesa Törölä, Lasse Valli