Patents by Inventor Jussi Tuppurainen

Jussi Tuppurainen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10495571
    Abstract: A method for monitoring surface phenomena includes measuring a first surface plasmon resonance angle value (?SPR,REF) of a sample region (REG1), measuring a first critical angle value (?TIR,REF) of the sample region (REG1), causing a change of surface concentration (cM1,SRF) of an analyte (M1) at the sample region (REG1), changing the bulk composition at the sample region (REG1), measuring a second surface plasmon resonance angle value (?SPR(t)) of the sample region (REG1), measuring a second critical angle value (?TIR(t)) of the sample region (REG1), and determining an indicator value (?AUX(t)) indicative of the change of the surface concentration (cM1,SRF), wherein the indicator value (?AUX(t)) is determined from the second surface plasmon resonance angle value (?SPR(t)) by compensating an effect of the bulk composition, and wherein the magnitude (?COMP) of said effect is determined by using the second critical angle value (?TIR(t)).
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: December 3, 2019
    Assignee: BioNavis Oy
    Inventors: Janusz Sadowski, Niko Granqvist, Jussi Tuppurainen, Annika Jokinen
  • Publication number: 20170067826
    Abstract: A method for monitoring surface phenomena includes measuring a first surface plasmon resonance angle value (?SPR,REF) of a sample region (REG1), measuring a first critical angle value (?TIR,REF) of the sample region (REG1), causing a change of surface concentration (cM1,SRF) of an analyte (M1) at the sample region (REG1), changing the bulk composition at the sample region (REG1), measuring a second surface plasmon resonance angle value (?SPR(t)) of the sample region (REG1), measuring a second critical angle value (?TIR(t)) of the sample region (REG1), and determining an indicator value (?AUX(t)) indicative of the change of the surface concentration (cM1,SRF), wherein the indicator value (?AUX(t)) is determined from the second surface plasmon resonance angle value (?SPR(t)) by compensating an effect of the bulk composition, and wherein the magnitude (?COMP) of said effect is determined by using the second critical angle value (?TIR(t)).
    Type: Application
    Filed: February 18, 2015
    Publication date: March 9, 2017
    Inventors: Janusz SADOWSKI, Niko GRANQVIST, Jussi TUPPURAINEN, Annika JOKINEN
  • Patent number: 8136403
    Abstract: The present invention relates to a micromechanical sensor for analyzing liquid samples and an array of such sensors. The invention also concerns a method for sensing liquid samples and the use of longitudinal bulk acoustic waves for analyzing liquid phase samples micromechanically. The sensor comprises a body and a planar wave guide portion spaced from the body. At least one electro-mechanical transducer element are used for excitation of longitudinal bulk acoustic waves to the wave guide portion in response to electrical actuation and for converting acoustic waves into electrical signals. The wave guide portion is provided with a sample-receiving zone onto which the sample can be introduced. By means of the invention, the sensitivity of micromechanical liquid sensors can be improved.
    Type: Grant
    Filed: July 4, 2006
    Date of Patent: March 20, 2012
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Heikki Seppa, Kirsi Tappura, Jussi Tuppurainen, Tomi Mattila, Ari Alastalo, Hannu Helle, Aarne Oja
  • Publication number: 20090277271
    Abstract: The present invention relates to a micromechanical sensor for analyzing liquid samples and an array of such sensors. The invention also concerns a method for sensing liquid samples and the use of longitudinal bulk acoustic waves for analyzing liquid phase samples micromechanically. The sensor comprises a body and a planar wave guide portion spaced from the body. At least one electro-mechanical transducer element are used for excitation of longitudinal bulk acoustic waves to the wave guide portion in response to electrical actuation and for converting acoustic waves into electrical signals. The wave guide portion is provided with a sample-receiving zone onto which the sample can be introduced. By means of the invention, the sensitivity of micromechanical liquid sensors can be improved.
    Type: Application
    Filed: July 4, 2006
    Publication date: November 12, 2009
    Applicant: VALTION TEKNILLINEN TUTKIMUSKESKUS
    Inventors: Heikki Seppa, Kirsi Tappura, Jussi Tuppurainen, Tomi Mattila, Ari Alastalo, Hannu Helle, Aarne Oja