Patents by Inventor Justin A. Forbes
Justin A. Forbes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12055946Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: GrantFiled: November 22, 2022Date of Patent: August 6, 2024Assignee: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Publication number: 20230273618Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: ApplicationFiled: May 5, 2023Publication date: August 31, 2023Applicant: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Patent number: 11681300Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: GrantFiled: February 4, 2020Date of Patent: June 20, 2023Assignee: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Patent number: 11640175Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: GrantFiled: February 4, 2020Date of Patent: May 2, 2023Assignee: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Publication number: 20230084450Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: ApplicationFiled: November 22, 2022Publication date: March 16, 2023Applicant: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Patent number: 11531352Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: GrantFiled: February 4, 2020Date of Patent: December 20, 2022Assignee: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Patent number: 11416001Abstract: A materials handling vehicle includes a camera, an odometry module to generate odometry data, a processor, and a drive mechanism. The camera captures images of an identifier for a racking system aisle and at least a rack leg portion positioned in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position in the aisle using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the expected vehicle position and the vehicle odometry-based position, and update the vehicle odometry-based position using the odometry error signal.Type: GrantFiled: July 17, 2019Date of Patent: August 16, 2022Assignee: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Patent number: 11060872Abstract: Systems and methods for calibrating odometry of a materials handling vehicle. One embodiment of a method includes determining a current location of the materials handling vehicle, determining an odometry distance from the current location to a destination based on a calculation of a determined number of rotations of a wheel and a circumference of the wheel, and determining a positioning system distance from the current location to the destination. Some embodiments include comparing the odometry distance with data from the positioning system distance to calculate a scaling factor, applying the scaling factor to a fast alpha filter to achieve a fast filter result, and applying the scaling factor to a slow alpha filter to achieve a slow filter result. Similarly, some embodiments include applying the fast alpha filter to the scaling factor to smooth noise, calculating an updated odometry distance utilizing the scaling factor, and utilizing the updated odometry distance.Type: GrantFiled: September 19, 2019Date of Patent: July 13, 2021Assignee: Crown Equipment CorporationInventors: Timothy William Fanselow, Justin Forbes Thode, Ryan Michaels Estep
-
Publication number: 20200247613Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: ApplicationFiled: February 4, 2020Publication date: August 6, 2020Applicant: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Publication number: 20200247612Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: ApplicationFiled: February 4, 2020Publication date: August 6, 2020Applicant: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Publication number: 20200249692Abstract: A materials handling vehicle includes a camera, odometry module, processor, and drive mechanism. The camera captures images of an identifier for a racking system aisle and a rack leg portion in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the positions, and update the vehicle odometry-based position using the odometry error signal and/or generated mast sway compensation to use for end of aisle protection and/or in/out of aisle localization.Type: ApplicationFiled: February 4, 2020Publication date: August 6, 2020Applicant: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Publication number: 20200026304Abstract: A materials handling vehicle includes a camera, an odometry module to generate odometry data, a processor, and a drive mechanism. The camera captures images of an identifier for a racking system aisle and at least a rack leg portion positioned in the aisle. The processor uses the identifier to generate information indicative of an initial rack leg position and rack leg spacing in the aisle, generate an initial vehicle position using the initial rack leg position, generate a vehicle odometry-based position in the aisle using odometry data and the initial vehicle position, detect a subsequent rack leg using a captured image, correlate the detected subsequent rack leg with an expected vehicle position using rack leg spacing, generate an odometry error signal based on a difference between the expected vehicle position and the vehicle odometry-based position, and update the vehicle odometry-based position using the odometry error signal.Type: ApplicationFiled: July 17, 2019Publication date: January 23, 2020Applicant: Crown Equipment CorporationInventors: Justin Forbes Thode, Grace Da-In Lee
-
Publication number: 20200011674Abstract: Systems and methods for calibrating odometry of a materials handling vehicle. One embodiment of a method includes determining a current location of the materials handling vehicle, determining an odometry distance from the current location to a destination based on a calculation of a determined number of rotations of a wheel and a circumference of the wheel, and determining a positioning system distance from the current location to the destination. Some embodiments include comparing the odometry distance with data from the positioning system distance to calculate a scaling factor, applying the scaling factor to a fast alpha filter to achieve a fast filter result, and applying the scaling factor to a slow alpha filter to achieve a slow filter result. Similarly, some embodiments include applying the fast alpha filter to the scaling factor to smooth noise, calculating an updated odometry distance utilizing the scaling factor, and utilizing the updated odometry distance.Type: ApplicationFiled: September 19, 2019Publication date: January 9, 2020Applicant: Crown Equipment CorporationInventors: Timothy William Fanselow, Justin Forbes Thode, Ryan Michaels Estep
-
Patent number: 10458799Abstract: Systems and methods for calibrating odometry of a materials handling vehicle. One embodiment of a method includes determining a current location of the materials handling vehicle, determining an odometry distance from the current location to a destination based on a calculation of a determined number of rotations of a wheel and a circumference of the wheel, and determining a positioning system distance from the current location to the destination. Some embodiments include comparing the odometry distance with data from the positioning system distance to calculate a scaling factor, applying the scaling factor to a fast alpha filter to achieve a fast filter result, and applying the scaling factor to a slow alpha filter to achieve a slow filter result. Similarly, some embodiments include applying the fast alpha filter to the scaling factor to smooth noise, calculating an updated odometry distance utilizing the scaling factor, and utilizing the updated odometry distance.Type: GrantFiled: February 6, 2018Date of Patent: October 29, 2019Assignee: Crown Equipment CorporationInventors: Timothy William Fanselow, Justin Forbes Thode, Ryan Michaels Estep
-
Publication number: 20180164104Abstract: Systems and methods for calibrating odometry of a materials handling vehicle. One embodiment of a method includes determining a current location of the materials handling vehicle, determining an odometry distance from the current location to a destination based on a calculation of a determined number of rotations of a wheel and a circumference of the wheel, and determining a positioning system distance from the current location to the destination. Some embodiments include comparing the odometry distance with data from the positioning system distance to calculate a scaling factor, applying the scaling factor to a fast alpha filter to achieve a fast filter result, and applying the scaling factor to a slow alpha filter to achieve a slow filter result. Similarly, some embodiments include applying the fast alpha filter to the scaling factor to smooth noise, calculating an updated odometry distance utilizing the scaling factor, and utilizing the updated odometry distance.Type: ApplicationFiled: February 6, 2018Publication date: June 14, 2018Applicant: Crown Equipment CorporationInventors: Timothy William Fanselow, Justin Forbes Thode, Ryan Michaels Estep
-
Patent number: 9921067Abstract: Systems and methods for calibrating odometry of a materials handling vehicle. One embodiment of a method includes determining a current location of the materials handling vehicle, determining an odometry distance from the current location to a destination based on a calculation of a determined number of rotations of a wheel and a circumference of the wheel, and determining a positioning system distance from the current location to the destination. Some embodiments include comparing the odometry distance with data from the positioning system distance to calculate a scaling factor, applying the scaling factor to a fast alpha filter to achieve a fast filter result, and applying the scaling factor to a slow alpha filter to achieve a slow filter result. Similarly, some embodiments include applying the fast alpha filter to the scaling factor to smooth noise, calculating an updated odometry distance utilizing the scaling factor, and utilizing the updated odometry distance.Type: GrantFiled: May 19, 2016Date of Patent: March 20, 2018Assignee: Crown Equipment CorporationInventors: Timothy William Fanselow, Justin Forbes Thode, Ryan Michaels Estep
-
Publication number: 20160349061Abstract: Systems and methods for calibrating odometry of a materials handling vehicle. One embodiment of a method includes determining a current location of the materials handling vehicle, determining an odometry distance from the current location to a destination based on a calculation of a determined number of rotations of a wheel and a circumference of the wheel, and determining a positioning system distance from the current location to the destination. Some embodiments include comparing the odometry distance with data from the positioning system distance to calculate a scaling factor, applying the scaling factor to a fast alpha filter to achieve a fast filter result, and applying the scaling factor to a slow alpha filter to achieve a slow filter result. Similarly, some embodiments include applying the fast alpha filter to the scaling factor to smooth noise, calculating an updated odometry distance utilizing the scaling factor, and utilizing the updated odometry distance.Type: ApplicationFiled: May 19, 2016Publication date: December 1, 2016Applicant: Crown Equipment CorporationInventors: Timothy William Fanselow, Justin Forbes Thode, Ryan Michaels Estep
-
Patent number: 8851204Abstract: A downhole tool having a progressive cavity mud motor with an impact generator disposed within the mud motor rotor or bearing assembly. In one embodiment, the impact generator includes a mud turbine connected to a eccentric ring that encircles and periodically strikes an anvil surface of a percussion shaft. The eccentric ring is pivotable between an engaged striking position and a disengaged non-striking position. The percussion shaft is coupled to a drill bit though a splined connector that provides limited slip for transmitting rotation of the mud motor rotor to the drill bit and for transmitting percussion strikes against the anvil to the drill bit without the need to accelerate the entire drill string.Type: GrantFiled: April 18, 2012Date of Patent: October 7, 2014Assignee: Ulterra Drilling Technologies, L.P.Inventors: Craig Knull, Justin Forbes
-
Publication number: 20130277116Abstract: A downhole tool having a progressive cavity mud motor with an impact generator disposed within the mud motor rotor or bearing assembly. In one embodiment, the impact generator includes a mud turbine connected to a eccentric ring that encircles and periodically strikes an anvil surface of a percussion shaft. The eccentric ring is pivotable between an engaged striking position and a disengaged non-striking position. The percussion shaft is coupled to a drill bit though a splined connector that provides limited slip for transmitting rotation of the mud motor rotor to the drill bit and for transmitting percussion strikes against the anvil to the drill bit without the need to accelerate the entire drill string.Type: ApplicationFiled: April 18, 2012Publication date: October 24, 2013Inventors: CRAIG KNULL, Justin Forbes
-
Publication number: 20020170129Abstract: A magnetic control valve is provided in a suction powered pool cleaner of the type for vacuuming dirt and debris from submerged floor and side wall surfaces of a swimming pool. The pool cleaner comprises a head defining a suction inlet for vacuum inflow of water and debris into a plenum chamber, and further through a suction tube adapted for connection via a vacuum hose to a conventional pool water filtration system. The control valve includes an oscillatory valve member movable between open and substantially closed positions relative to an upstream end of the suction tube to produce pressure fluctuations causing the cleaner to advance in steps over submerged pool surfaces. Oscillatory driving of the valve head is assisted by permanent magnets mounted on the valve member and cleaner head to generate repulsion forces as the valve head respectively approaches the open and closed positions.Type: ApplicationFiled: May 15, 2001Publication date: November 21, 2002Inventors: Thomas E. Veloskey, Justin A. Forbes, Jeffrey A. Wichmann, Ronald J. Sargent