Patents by Inventor Justin B. Alms

Justin B. Alms has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210053333
    Abstract: A composite laminate comprising a substrate having a hot side and a cold side opposite said hot side; a thermal barrier coating coupled to said hot side of said substrate; and a reflective coating disposed on said thermal barrier coating.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 25, 2021
    Applicant: United Technologies Corporation
    Inventors: Scott Alan Eastman, Justin B. Alms, Xuemei Wang
  • Patent number: 10647065
    Abstract: A method of making a composite article involves first forming an intermediate substrate. The intermediate substrate can be formed from fibers and an uncured thermoset polymer composition followed by partial cure, or from fibers and an uncured thermoset polymer composition followed by cure of the thermoset polymer composition and deposition of a thermoplastic on the surface of the substrate, or from fibers and an uncured thermoset polymer composition followed by cure and exposure of the substrate to organic solvent, a plasticizer, moisture, and/or heat. The intermediate substrate prepared according to any of the above techniques is then subjected to cold gas spray deposition to deposit a metal layer onto the intermediate substrate. In the case where the substrate was formed by partially curing a thermoset polymer composition, the metal-coated partially-cured thermoset polymer substrate is then fully cured.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: May 12, 2020
    Assignee: SIKORSKY AIRCRAFT CORPORATION
    Inventors: Justin B. Alms, Eric J. Amis, Joseph J. Sangiovanni, Ellen Y. Sun, Aaron T. Nardi
  • Publication number: 20170165906
    Abstract: A method of making a composite article involves first forming an intermediate substrate. The intermediate substrate can be formed from fibers and an uncured thermoset polymer composition followed by partial cure, or from fibers and an uncured thermoset polymer composition followed by cure of the thermoset polymer composition and deposition of a thermoplastic on the surface of the substrate, or from fibers and an uncured thermoset polymer composition followed by cure and exposure of the substrate to organic solvent, a plasticizer, moisture, and/or heat. The intermediate substrate prepared according to any of the above techniques is then subjected to cold gas spray deposition to deposit a metal layer onto the intermediate substrate. In the case where the substrate was formed by partially curing a thermoset polymer composition, the metal-coated partially-cured thermoset polymer substrate is then fully cured.
    Type: Application
    Filed: July 31, 2015
    Publication date: June 15, 2017
    Inventors: Justin B. Alms, Eric J. Amis, Joseph J. Sangiovanni, Ellen Y. Sun, Aaron T. Nardi
  • Patent number: 9079367
    Abstract: Systems and methods for controlling permeability in vacuum infusion processes are disclosed. A system includes a tool surface, a flexible film, a preform, a magnetic field source, and a magnetic element. The flexible film has a periphery sealingly coupled to the tool surface to define a volume. The preform is disposed within the volume. The magnetic field source is configured to generate a magnetic field. The magnetic element is positioned to receive the magnetic field generate by the magnetic field source. The magnetic element is configured to move the flexible film away from the upper side of the tool surface under application of the magnetic field. A method includes generating a magnetic field with the magnetic field source and receiving the magnetic field with the magnetic element to move the flexible film away from the upper side of the tool surface, thereby increasing permeability of the preform.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: July 14, 2015
    Assignee: University of Delaware
    Inventors: Justin B. Alms, Suresh G. Advani, James L. Glancey
  • Patent number: 8808612
    Abstract: Methods and apparatus for vacuum infusing resin into a fabric preform within a mold. The methods comprise increasing permeability in a selected region, such as by deploying a VIPR chamber in a location corresponding to the resin injection port corresponding to the resin flow front furthest from the mold vent or a location identified by predictive modeling as best to achieve a desired flow front geometry. Suitable apparatus comprise a VIPR chamber, an image detector for detecting resin flow fronts, a processor programmed to identify a desired location to deploy the VIPR chamber, and an automatic positioner for moving the VIPR chamber to the identified location.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: August 19, 2014
    Assignee: University of Delaware
    Inventors: Justin B. Alms, James L. Glancey, Suresh G. Advani
  • Patent number: 8210841
    Abstract: A vacuum-induced injection molding apparatus is disclosed. The apparatus includes a tool surface having an injection port extending therethrough. A flexible film extends over and is sealingly coupled to the tool surface. The flexible film comprises an outer surface and an inner surface such that the flexible film inner surface and the tool surface define a volume. A vacuum chamber is sealingly coupled to the outer surface of the flexible film. A vacuum port is in fluid communication with the volume. A method of injection molding a polymer matrix composite is also disclosed.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: July 3, 2012
    Assignee: University of Delaware
    Inventors: Justin B. Alms, James L. Glancey, Suresh G. Advani
  • Publication number: 20120068382
    Abstract: Systems and methods for controlling permeability in vacuum infusion processes are disclosed. A system includes a tool surface, a flexible film, a preform, a magnetic field source, and a magnetic element. The flexible film has a periphery sealingly coupled to the tool surface to define a volume. The preform is disposed within the volume. The magnetic field source is configured to generate a magnetic field. The magnetic element is positioned to receive the magnetic field generate by the magnetic field source. The magnetic element is configured to move the flexible film away from the upper side of the tool surface under application of the magnetic field. A method includes generating a magnetic field with the magnetic field source and receiving the magnetic field with the magnetic element to move the flexible film away from the upper side of the tool surface, thereby increasing permeability of the preform.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 22, 2012
    Applicant: University of Delaware
    Inventors: Justin B. Alms, Suresh G. Advani, James L. Glancey
  • Publication number: 20110046771
    Abstract: Methods and apparatus for vacuum infusing resin into a fabric preform within a mold. The methods comprise increasing permeability in a selected region, such as by deploying a VIPR chamber in a location corresponding to the resin injection port corresponding to the resin flow front furthest from the mold vent or a location identified by predictive modeling as best to achieve a desired flow front geometry. Suitable apparatus comprise a VIPR chamber, an image detector for detecting resin flow fronts, a processor programmed to identify a desired location to deploy the VIPR chamber, and an automatic positioner for moving the VIPR chamber to the identified location.
    Type: Application
    Filed: August 18, 2010
    Publication date: February 24, 2011
    Applicant: University of Delaware
    Inventors: Justin B. Alms, James L. Glancey, Suresh G. Advani
  • Publication number: 20100072677
    Abstract: A vacuum-induced injection molding apparatus is disclosed. The apparatus includes a tool surface having an injection port extending therethrough. A flexible film extends over and is sealingly coupled to the tool surface. The flexible film comprises an outer surface and an inner surface such that the flexible film inner surface and the tool surface define a volume. A vacuum chamber is sealingly coupled to the outer surface of the flexible film. A vacuum port is in fluid communication with the volume. A method of injection molding a polymer matrix composite is also disclosed.
    Type: Application
    Filed: August 13, 2009
    Publication date: March 25, 2010
    Applicant: University of Delaware
    Inventors: Justin B. Alms, James L. Glancey, Suresh G. Advani