Patents by Inventor Justin B. Clayton
Justin B. Clayton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12106232Abstract: Apparatus, methods, and systems for cross-domain time series data conversion are disclosed. In an example embodiment, a first time series of a first type of data is received and stored. The first time series of the first type of data is encoded as a first distributed representation for the first type of data. The first distributed representation is converted to a second distributed representation for a second type of data which is different from the first type of data. The second distributed representation for the second type of data is decoded as a second time series of the second type of data.Type: GrantFiled: September 23, 2019Date of Patent: October 1, 2024Assignee: Preferred Networks, Inc.Inventors: Daisuke Okanohara, Justin B. Clayton
-
Publication number: 20200019877Abstract: Apparatus, methods, and systems for cross-domain time series data conversion are disclosed. In an example embodiment, a first time series of a first type of data is received and stored. The first time series of the first type of data is encoded as a first distributed representation for the first type of data. The first distributed representation is converted to a second distributed representation for a second type of data which is different from the first type of data. The second distributed representation for the second type of data is decoded as a second time series of the second type of data.Type: ApplicationFiled: September 23, 2019Publication date: January 16, 2020Applicant: Preferred Networks, Inc.Inventors: Daisuke OKANOHARA, Justin B. CLAYTON
-
Patent number: 10460251Abstract: Apparatus, methods, and systems for cross-domain time series data conversion are disclosed. In an example embodiment, a first time series of a first type of data is received and stored. The first time series of the first type of data is encoded as a first distributed representation for the first type of data. The first distributed representation is converted to a second distributed representation for a second type of data which is different from the first type of data. The second distributed representation for the second type of data is decoded as a second time series of the second type of data.Type: GrantFiled: June 19, 2015Date of Patent: October 29, 2019Assignee: PREFERRED NETWORKS INC.Inventors: Daisuke Okanohara, Justin B. Clayton
-
Publication number: 20190325346Abstract: Machine learning with model filtering and model mixing for edge devices in a heterogeneous environment is disclosed. In an example embodiment, an edge device includes a communication module, a data collection device, a memory, a machine learning module, and a model mixing module. The edge device analyzes collected data with a model for a first task, outputs a result, and updates the model to create a local model. The edge device communicates with other edge devices in a heterogeneous group, transmits a request for local models to the heterogeneous group, and receives local models from the heterogeneous group. The edge device filters the local models by structure metadata, including second local models, which relate to a second task. The edge device performs a mix operation of the second local models to generate a mixed model which relates to the second task, and transmits the mixed model to the heterogeneous group.Type: ApplicationFiled: June 28, 2019Publication date: October 24, 2019Applicant: Preferred Networks, Inc.Inventors: Daisuke OKANOHARA, Justin B. CLAYTON, Toru NISHIKAWA, Shohei HIDO, Nobuyuki KUBOTA, Nobuyuki OTA, Seiya TOKUI
-
Patent number: 10410113Abstract: Systems, methods, and apparatus for time series data adaptation, including sensor fusion, are disclosed. For example, a system includes a variational inference machine, a sequential data forecast machine including a hidden state, and a machine learning model. The sequential data forecast machine exports a version of the hidden state. The variational inference machine receives as inputs time series data and the version of the hidden state, and outputs a time dependency infused latent distribution. The sequential data forecast machine obtains the version of the hidden state, receives as inputs the time series data and the time dependency infused latent distribution, and updates the hidden state based on the time series data, the time dependency infused latent distribution, and the version of the hidden state to generate a second version of the hidden state. The time dependency infused latent distribution is input into the machine learning model, which outputs a result.Type: GrantFiled: January 14, 2016Date of Patent: September 10, 2019Assignee: PREFERRED NETWORKS, INC.Inventors: Justin B. Clayton, Daisuke Okanohara, Shohei Hido
-
Patent number: 10387794Abstract: Machine learning with model filtering and model mixing for edge devices in a heterogeneous environment is disclosed. In an example embodiment, an edge device includes a communication module, a data collection device, a memory, a machine learning module, and a model mixing module. The edge device analyzes collected data with a model for a first task, outputs a result, and updates the model to create a local model. The edge device communicates with other edge devices in a heterogeneous group, transmits a request for local models to the heterogeneous group, and receives local models from the heterogeneous group. The edge device filters the local models by structure metadata, including second local models, which relate to a second task. The edge device performs a mix operation of the second local models to generate a mixed model which relates to the second task, and transmits the mixed model to the heterogeneous group.Type: GrantFiled: January 22, 2015Date of Patent: August 20, 2019Assignee: PREFERRED NETWORKS, INC.Inventors: Daisuke Okanohara, Justin B. Clayton, Toru Nishikawa, Shohei Hido, Nobuyuki Kubota, Nobuyuki Ota, Seiya Tokui
-
Patent number: 9990587Abstract: A machine learning heterogeneous edge device, method, and system are disclosed. In an example embodiment, an edge device includes a communication module, a data collection device, a memory, a machine learning module, a group determination module, and a leader election module. The edge device analyzes collected data with a model, outputs a result, and updates the model to create a local model. The edge device communicates with other edge devices in a heterogeneous group. The edge device determines group membership and determines a leader edge device. The edge device receives a request for the local model, transmits the local model to the leader edge device, receives a mixed model created by the leader edge device performing a mix operation of the local model and a different local model, and replaces the local model with the mixed model.Type: GrantFiled: January 22, 2015Date of Patent: June 5, 2018Assignee: PREFERRED NETWORKS, INC.Inventors: Daisuke Okanohara, Justin B. Clayton, Toru Nishikawa, Shohei Hido, Nobuyuki Kubota, Nobuyuki Ota, Seiya Tokui
-
Publication number: 20170206464Abstract: Systems, methods, and apparatus for time series data adaptation, including sensor fusion, are disclosed. For example, a system includes a variational inference machine, a sequential data forecast machine including a hidden state, and a machine learning model. The sequential data forecast machine exports a version of the hidden state. The variational inference machine receives as inputs time series data and the version of the hidden state, and outputs a time dependency infused latent distribution. The sequential data forecast machine obtains the version of the hidden state, receives as inputs the time series data and the time dependency infused latent distribution, and updates the hidden state based on the time series data, the time dependency infused latent distribution, and the version of the hidden state to generate a second version of the hidden state. The time dependency infused latent distribution is input into the machine learning model, which outputs a result.Type: ApplicationFiled: January 14, 2016Publication date: July 20, 2017Inventors: Justin B. Clayton, Daisuke Okanohara, Shohei Hido
-
Publication number: 20160371316Abstract: Apparatus, methods, and systems for cross-domain time series data conversion are disclosed. In an example embodiment, a first time series of a first type of data is received and stored. The first time series of the first type of data is encoded as a first distributed representation for the first type of data. The first distributed representation is converted to a second distributed representation for a second type of data which is different from the first type of data. The second distributed representation for the second type of data is decoded as a second time series of the second type of data.Type: ApplicationFiled: June 19, 2015Publication date: December 22, 2016Inventors: Daisuke Okanohara, Justin B. Clayton
-
Publication number: 20160217387Abstract: Machine learning with model filtering and model mixing for edge devices in a heterogeneous environment is disclosed. In an example embodiment, an edge device includes a communication module, a data collection device, a memory, a machine learning module, and a model mixing module. The edge device analyzes collected data with a model for a first task, outputs a result, and updates the model to create a local model. The edge device communicates with other edge devices in a heterogeneous group, transmits a request for local models to the heterogeneous group, and receives local models from the heterogeneous group. The edge device filters the local models by structure metadata, including second local models, which relate to a second task. The edge device performs a mix operation of the second local models to generate a mixed model which relates to the second task, and transmits the mixed model to the heterogeneous group.Type: ApplicationFiled: January 22, 2015Publication date: July 28, 2016Inventors: Daisuke Okanohara, Justin B. Clayton, Toru Nishikawa, Shohei Hido, Nobuyuki Kubota, Nobuyuki Ota, Seiya Tokui
-
Publication number: 20160217388Abstract: A machine learning heterogeneous edge device, method, and system are disclosed. In an example embodiment, an edge device includes a communication module, a data collection device, a memory, a machine learning module, a group determination module, and a leader election module. The edge device analyzes collected data with a model, outputs a result, and updates the model to create a local model. The edge device communicates with other edge devices in a heterogeneous group. The edge device determines group membership and determines a leader edge device. The edge device receives a request for the local model, transmits the local model to the leader edge device, receives a mixed model created by the leader edge device performing a mix operation of the local model and a different local model, and replaces the local model with the mixed model.Type: ApplicationFiled: January 22, 2015Publication date: July 28, 2016Inventors: Daisuke Okanohara, Justin B. Clayton, Toru Nishikawa, Shohei Hido, Nobuyuki Kubota, Nobuyuki Ota, Seiya Tokui