Patents by Inventor Justin BARTON

Justin BARTON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11629694
    Abstract: A system for computing wind turbine estimated operational parameters and/or control commands, includes sensors monitoring the wind turbine, a control processor implementing a model performing a linearization evaluation to obtain a structural component dynamic behavior, a fluid component dynamic behavior, and/or a combined structural and fluid component dynamic behavior of wind turbine operation, and a module performing a calculation utilizing the linearization evaluation of the structural component dynamic behavior, the fluid component dynamic behavior, and/or the combined structural and fluid component dynamic behavior. The module being at least one of an estimation module and a multivariable control module. The estimation module generating signal estimates of turbine or fluid states. The multivariable control module determining actuator commands that include wind turbine commands that maintain operation of the wind turbine at a predetermined setting in real time.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: April 18, 2023
    Assignee: General Electric Company
    Inventors: Fernando Javier D'Amato, Fabiano Daher Adegas, Justin Barton, Alexander Luenenschloss
  • Patent number: 11125211
    Abstract: A system for wind turbine control includes a state dependent quadratic regulator (SDQR) control unit, a linear quadratic regulator (LQR) generating control acceleration commands for wind turbine speed and wind turbine power regulation, an actuator dynamic model computing a gain value for the LQR at predetermined sampling intervals and augmenting the actuator dynamic model with a wind turbine model. The wind turbine model either an analytical linearization model or a precomputed linear model, where the precomputed linear model is selected from a model bank based on a real-time scheduling operation, and the analytical linearization model is computed using an online linearization operation in real-time at time intervals during operation of the wind turbine based on current wind turbine operating point values present at about the time of linearization. A method and a non-transitory medium are also disclosed.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: September 21, 2021
    Assignee: General Electric Company
    Inventors: Masoud Abbaszadeh, Fabiano Daher Adegas, Fernando Javier D'Amato, Junqiang Zhou, Conner Shane, Justin Barton
  • Publication number: 20210115895
    Abstract: A system for computing wind turbine estimated operational parameters and/or control commands, includes sensors monitoring the wind turbine, a control processor implementing a model performing a linearization evaluation to obtain a structural component dynamic behavior, a fluid component dynamic behavior, and/or a combined structural and fluid component dynamic behavior of wind turbine operation, and a module performing a calculation utilizing the linearization evaluation of the structural component dynamic behavior, the fluid component dynamic behavior, and/or the combined structural and fluid component dynamic behavior. The module being at least one of an estimation module and a multivariable control module. The estimation module generating signal estimates of turbine or fluid states. The multivariable control module determining actuator commands that include wind turbine commands that maintain operation of the wind turbine at a predetermined setting in real time.
    Type: Application
    Filed: October 22, 2019
    Publication date: April 22, 2021
    Inventors: Fernando Javier D'AMATO, Fabiano DAHER ADEGAS, Justin BARTON, Alexander LUENENSCHLOSS
  • Publication number: 20200362819
    Abstract: A system for wind turbine control includes a state dependent quadratic regulator (SDQR) control unit, a linear quadratic regulator (LQR) generating control acceleration commands for wind turbine speed and wind turbine power regulation, an actuator dynamic model computing a gain value for the LQR at predetermined sampling intervals and augmenting the actuator dynamic model with a wind turbine model. The wind turbine model either an analytical linearization model or a precomputed linear model, where the precomputed linear model is selected from a model bank based on a real-time scheduling operation, and the analytical linearization model is computed using an online linearization operation in real-time at time intervals during operation of the wind turbine based on current wind turbine operating point values present at about the time of linearization. A method and a non-transitory medium are also disclosed.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Inventors: Masoud ABBASZADEH, Fabiano DAHER ADEGAS, Fernando Javier D'AMATO, Junqiang ZHOU, Conner SHANE, Justin BARTON