Patents by Inventor Justin D. Cohen
Justin D. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12124770Abstract: The present disclosure generally relates techniques for audio-assisted enrollment of biometric features. In some embodiments, methods and devices for assisting users with enrollment of biometric features, using spatial audio cues, are described.Type: GrantFiled: August 24, 2023Date of Patent: October 22, 2024Assignee: Apple Inc.Inventors: Sawyer I. Cohen, Justin D. Crosby, Ruchir M. Dave, Martin E. Johnson, Benjamin J. Pope, Darius A. Satongar
-
Publication number: 20240317575Abstract: A device includes an opto-acoustic transducer configured to convert between an optical signal and an acoustic signal, an electro-acoustic transducer coupled to a microwave resonant circuit and configured to convert between an acoustic signal and a microwave signal, and an acoustic waveguide coupling the opto-acoustic transducer to the electro-acoustic transducer.Type: ApplicationFiled: April 30, 2024Publication date: September 26, 2024Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 12006206Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: July 15, 2022Date of Patent: June 11, 2024Assignee: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20230227305Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: March 21, 2023Publication date: July 20, 2023Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 11649160Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: November 2, 2020Date of Patent: May 16, 2023Assignee: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20220356058Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: July 15, 2022Publication date: November 10, 2022Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 11440792Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: November 2, 2020Date of Patent: September 13, 2022Assignee: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20210139315Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: November 2, 2020Publication date: May 13, 2021Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20210114864Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: November 2, 2020Publication date: April 22, 2021Applicant: California Institute of TechnologyInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 10858239Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: March 5, 2019Date of Patent: December 8, 2020Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Patent number: 10858240Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: GrantFiled: March 5, 2019Date of Patent: December 8, 2020Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20200062583Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: March 5, 2019Publication date: February 27, 2020Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
-
Publication number: 20190270635Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.Type: ApplicationFiled: March 5, 2019Publication date: September 5, 2019Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Ren Hengjiang, Justin D. Cohen
-
Patent number: 5713941Abstract: The present invention provides an improved whole body hyperthermia apparatus for raising the body temperature of a patient, said apparatus emitting radiant heat from a surface heated by a fluid. The present invention also provides an improved method for treating a cancer patient, said method comprising administering an anti-neoplastic agent to the cancer patient undergoing whole body hyperthermia under less stressful and more effective conditions with the improved whole body hyperthermia apparatus.Type: GrantFiled: April 27, 1993Date of Patent: February 3, 1998Assignee: Cancer Research InstituteInventors: H. Ian Robins, Justin D. Cohen