Patents by Inventor Justin D. Cohen

Justin D. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230227305
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Application
    Filed: March 21, 2023
    Publication date: July 20, 2023
    Applicant: California Institute of Technology
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Patent number: 11649160
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: May 16, 2023
    Assignee: California Institute of Technology
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Publication number: 20220356058
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Application
    Filed: July 15, 2022
    Publication date: November 10, 2022
    Applicant: California Institute of Technology
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Patent number: 11440792
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: September 13, 2022
    Assignee: California Institute of Technology
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Publication number: 20210139315
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 13, 2021
    Applicant: California Institute of Technology
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Publication number: 20210114864
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Application
    Filed: November 2, 2020
    Publication date: April 22, 2021
    Applicant: California Institute of Technology
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Patent number: 10858240
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: December 8, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Patent number: 10858239
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: December 8, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Publication number: 20200062583
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Application
    Filed: March 5, 2019
    Publication date: February 27, 2020
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Publication number: 20190270635
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 5, 2019
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Ren Hengjiang, Justin D. Cohen
  • Patent number: 5713941
    Abstract: The present invention provides an improved whole body hyperthermia apparatus for raising the body temperature of a patient, said apparatus emitting radiant heat from a surface heated by a fluid. The present invention also provides an improved method for treating a cancer patient, said method comprising administering an anti-neoplastic agent to the cancer patient undergoing whole body hyperthermia under less stressful and more effective conditions with the improved whole body hyperthermia apparatus.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: February 3, 1998
    Assignee: Cancer Research Institute
    Inventors: H. Ian Robins, Justin D. Cohen