Patents by Inventor Justin E. Gottschlich
Justin E. Gottschlich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210294649Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: March 19, 2021Publication date: September 23, 2021Applicant: Intel CorporationInventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
-
Publication number: 20210279571Abstract: An apparatus to facilitate optimization of a neural network (NN) is disclosed. The apparatus includes optimization logic to define a NN topology having one or more macro layers, adjust the one or more macro layers to adapt to input and output components of the NN and train the NN based on the one or more macro layers.Type: ApplicationFiled: February 17, 2021Publication date: September 9, 2021Applicant: Intel CorporationInventors: Narayan Srinivasa, Joydeep Ray, Nicolas C. Galoppo Von Borries, Ben J. Ashbaugh, Prasoonkumar Surti, Feng Chen, Barath Lakshmanan, Elmoustapha Ould-Ahmed-Vall, Liwei Ma, Linda L. Hurd, Abhishek R. Appu, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Chandrasekaran Sakthivel, Farshad Akhbari, Dukhwan Kim, Altug Koker, Nadathur Rajagopalan Satish
-
Publication number: 20210241417Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type.Type: ApplicationFiled: January 11, 2021Publication date: August 5, 2021Applicant: Intel CorporationInventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
-
Publication number: 20210201438Abstract: A mechanism is described for facilitating inference coordination and processing utilization for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, at training time, information relating to one or more tasks to be performed according to a training dataset relating to a processor including a graphics processor. The method may further include analyzing the information to determine one or more portions of hardware relating to the processor capable of supporting the one or more tasks, and configuring the hardware to pre-select the one or more portions to perform the one or more tasks, while other portions of the hardware remain available for other tasks.Type: ApplicationFiled: January 7, 2021Publication date: July 1, 2021Applicant: Intel CorporationInventors: Abhishek R. Appu, Altug Koker, John C. Weast, Mike B. Macpherson, Linda L. Hurd, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Kamal Sinha, Joydeep Ray, Balaji Vembu, Sanjeev Jahagirdar, Vasanth Ranganathan, DUKHWAN Kim
-
Patent number: 11049213Abstract: A mechanism is described for facilitating sharing of data and compression expansion of models at autonomous machines. A method of embodiments, as described herein, includes detecting a first processor processing information relating to a neural network at a first computing device, where the first processor comprises a first graphics processor and the first computing device comprises a first autonomous machine. The method further includes facilitating the first processor to store one or more portions of the information in a library at a database, where the one or more portions are accessible to a second processor of a computing device.Type: GrantFiled: November 26, 2019Date of Patent: June 29, 2021Assignee: INTEL CORPORATIONInventors: Abhishek R. Appu, Altug Koker, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Joydeep Ray
-
Patent number: 10956330Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.Type: GrantFiled: December 26, 2019Date of Patent: March 23, 2021Assignee: INTEL CORPORATIONInventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
-
Patent number: 10929749Abstract: An apparatus to facilitate optimization of a neural network (NN) is disclosed. The apparatus includes optimization logic to define a NN topology having one or more macro layers, adjust the one or more macro layers to adapt to input and output components of the NN and train the NN based on the one or more macro layers.Type: GrantFiled: April 24, 2017Date of Patent: February 23, 2021Assignee: INTEL CORPORATIONInventors: Narayan Srinivasa, Joydeep Ray, Nicolas C. Galoppo Von Borries, Ben Ashbaugh, Prasoonkumar Surti, Feng Chen, Barath Lakshmanan, Elmoustapha Ould-Ahmed-Vall, Liwei Ma, Linda L. Hurd, Abhishek R. Appu, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Chandrasekaran Sakthivel, Farshad Akhbari, Dukhwan Kim, Altug Koker, Nadathur Rajagopalan Satish
-
Publication number: 20210035255Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.Type: ApplicationFiled: July 14, 2020Publication date: February 4, 2021Applicant: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 10902547Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type.Type: GrantFiled: November 21, 2017Date of Patent: January 26, 2021Assignee: Intel CorporationInventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
-
Patent number: 10891707Abstract: A mechanism is described for facilitating inference coordination and processing utilization for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, at training time, information relating to one or more tasks to be performed according to a training dataset relating to a processor including a graphics processor. The method may further include analyzing the information to determine one or more portions of hardware relating to the processor capable of supporting the one or more tasks, and configuring the hardware to pre-select the one or more portions to perform the one or more tasks, while other portions of the hardware remain available for other tasks.Type: GrantFiled: April 8, 2019Date of Patent: January 12, 2021Assignee: Intel CorporationInventors: Abhishek R. Appu, Altug Koker, John C. Weast, Mike B. Macpherson, Linda L. Hurd, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Kamal Sinha, Joydeep Ray, Balaji Vembu, Sanjeev Jahagirdar, Vasanth Ranganathan, Dukhwan Kim
-
Publication number: 20200394498Abstract: An apparatus to facilitate workload scheduling is disclosed. The apparatus includes one or more clients, one or more processing units to processes workloads received from the one or more clients, including hardware resources and scheduling logic to schedule direct access of the hardware resources to the one or more clients to process the workloads.Type: ApplicationFiled: July 1, 2020Publication date: December 17, 2020Applicant: Intel CorporationInventors: Liwei Ma, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Eriko Nurvitadhi, Chandrasekaran Sakthivel, Barath Lakshmanan, Jingyi Jin, Justin E. Gottschlich, Michael Strikland
-
Patent number: 10769748Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.Type: GrantFiled: November 21, 2018Date of Patent: September 8, 2020Assignee: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 10719760Abstract: An apparatus to facilitate workload scheduling is disclosed. The apparatus includes one or more clients, one or more processing units to processes workloads received from the one or more clients, including hardware resources and scheduling logic to schedule direct access of the hardware resources to the one or more clients to process the workloads.Type: GrantFiled: April 9, 2017Date of Patent: July 21, 2020Assignee: Intel CorporationInventors: Liwei Ma, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Eriko Nurvitadhi, Chandrasekaran Sakthivel, Barath Lakshmanan, Jingyi Jin, Justin E. Gottschlich, Michael Strickland
-
Publication number: 20200210338Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: December 26, 2019Publication date: July 2, 2020Applicant: Intel CorporationInventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
-
Publication number: 20200202480Abstract: A mechanism is described for facilitating sharing of data and compression expansion of models at autonomous machines. A method of embodiments, as described herein, includes detecting a first processor processing information relating to a neural network at a first computing device, where the first processor comprises a first graphics processor and the first computing device comprises a first autonomous machine. The method further includes facilitating the first processor to store one or more portions of the information in a library at a database, where the one or more portions are accessible to a second processor of a computing device.Type: ApplicationFiled: November 26, 2019Publication date: June 25, 2020Applicant: Intel CorporationInventors: Abhishek R. Appu, Altug Koker, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Joydeep Ray
-
Patent number: 10591313Abstract: Disclosed in some examples are methods, systems, and machine readable mediums for assessing the accuracy of one or more local sensors on a mobile device (such as an AV). In some examples, the accuracy of a local sensor of a first AV may be assessed by periodically comparing sensor readings collected by the local sensor to sensor readings matching selection criteria that are collected by one or more remote sensors located at one or more other nearby AVs. A sensor that reports data that is signifimaytly different from that reported by neighboring AVs is likely to be malfunctioning. The use of nearby sensors in nearby AVs may provide for a method for ensuring the integrity of the AV sensor readings without adding redundant sensors.Type: GrantFiled: September 29, 2017Date of Patent: March 17, 2020Assignee: Intel CorporationInventors: Lindsey Kuper, Justin E. Gottschlich
-
Publication number: 20200034946Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a memory device including a first integrated circuit (IC) including a plurality of memory channels and a second IC including a plurality of processing units, each coupled to a memory channel in the plurality of memory channels.Type: ApplicationFiled: August 5, 2019Publication date: January 30, 2020Applicant: Intel CorporationInventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
-
Publication number: 20200019844Abstract: A mechanism is described for facilitating smart collection of data and smart management of autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and combining a first computation directed to be performed locally at a local computing device with a second computation directed to be performed remotely at a remote computing device in communication with the local computing device over the one or more networks, where the first computation consumes low power, wherein the second computation consumes high power.Type: ApplicationFiled: July 22, 2019Publication date: January 16, 2020Applicant: Intel CorporationInventors: Brian T. Lewis, Feng Chen, Jeffrey R. Jackson, Justin E. Gottschlich, Rajkishore Barik, Xiaoming Chen, Prasoonkumar Surti, Mike B. Macpherson, Murali Sundaresan
-
Patent number: 10521349Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.Type: GrantFiled: February 15, 2019Date of Patent: December 31, 2019Assignee: INTEL CORPORATIONInventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
-
Patent number: 10497084Abstract: A mechanism is described for facilitating sharing of data and compression expansion of models at autonomous machines. A method of embodiments, as described herein, includes detecting a first processor processing information relating to a neural network at a first computing device, where the first processor comprises a first graphics processor and the first computing device comprises a first autonomous machine. The method further includes facilitating the first processor to store one or more portions of the information in a library at a database, where the one or more portions are accessible to a second processor of a computing device.Type: GrantFiled: April 24, 2017Date of Patent: December 3, 2019Assignee: INTEL CORPORATIONInventors: Abhishek R. Appu, Altug Koker, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Joydeep Ray