Patents by Inventor Justin H. Kearns
Justin H. Kearns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12165776Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: GrantFiled: August 2, 2023Date of Patent: December 10, 2024Assignees: TELADOC HEALTH, INC., IROBOT CORPORATIONInventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 11940800Abstract: An autonomous cleaning robot includes a controller configured to execute instructions to perform operations including moving the autonomous cleaning robot along a first portion of a path toward a waypoint, detecting, with a ranging sensor of the autonomous cleaning robot, an obstacle along the path between the first portion of the path and a second portion of the path, navigating the autonomous cleaning robot about the obstacle along a trajectory that maintains at least a clearance distance between the autonomous cleaning robot and the obstacle, and moving the autonomous cleaning robot along the second portion of the path.Type: GrantFiled: April 23, 2021Date of Patent: March 26, 2024Assignee: iRobot CorporationInventor: Justin H. Kearns
-
Publication number: 20240087738Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.Type: ApplicationFiled: November 17, 2023Publication date: March 14, 2024Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Patent number: 11830618Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.Type: GrantFiled: March 14, 2022Date of Patent: November 28, 2023Assignees: Teladoc Health, Inc., iRobot CorporationInventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Publication number: 20230377761Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: ApplicationFiled: August 2, 2023Publication date: November 23, 2023Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Publication number: 20230333551Abstract: An autonomous mobile robot includes a chassis, a drive supporting the chassis above a floor surface in a home and configured to move the chassis across the floor surface, a variable height member being coupled to the chassis and being vertically extendible, a camera supported by the variable height member, and a controller. The controller is configured to operate the drive to navigate the robot to locations within the home and to adjust a height of the variable height member upon reaching a first of the locations. The controller is also configured to, while the variable height member is at the adjusted height, operate the camera to capture digital imagery of the home at the first of the locations.Type: ApplicationFiled: April 26, 2023Publication date: October 19, 2023Inventors: Michael J. Dooley, Nikolai Romanov, Orjeta Taka, Justin H. Kearns
-
Patent number: 11756694Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: GrantFiled: November 22, 2022Date of Patent: September 12, 2023Assignee: Teladoc Health, Inc.Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 11662722Abstract: An autonomous mobile robot includes a chassis, a drive supporting the chassis above a floor surface in a home and configured to move the chassis across the floor surface, a variable height member being coupled to the chassis and being vertically extendible, a camera supported by the variable height member, and a controller. The controller is configured to operate the drive to navigate the robot to locations within the home and to adjust a height of the variable height member upon reaching a first of the locations. The controller is also configured to, while the variable height member is at the adjusted height, operate the camera to capture digital imagery of the home at the first of the locations.Type: GrantFiled: September 9, 2019Date of Patent: May 30, 2023Assignee: iRobot CorporationInventors: Michael J. Dooley, Nikolai Romanov, Orjeta Taka, Justin H. Kearns
-
Publication number: 20230080227Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: ApplicationFiled: November 22, 2022Publication date: March 16, 2023Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 11592573Abstract: Robot localization or mapping can be provided without requiring the expense or complexity of an “at-a-distance” sensor, such as a camera, a LIDAR sensor, or the like. Landmark features can be created or matched using motion sensor data, such as odometry or gyro data or the like, and adjacency sensor data. Despite the relative ambiguity of adjacency-sensor derived landmark features, a particle filter approach can be configured to use such information, instead of requiring “at-a-distance” information from a constant stream of visual images from a camera, such as for robot localization or mapping. Landmark sequence constraints or a Wi-Fi signal strength map can be used together with the particle filter approach.Type: GrantFiled: September 15, 2020Date of Patent: February 28, 2023Assignee: iRobot CorporationInventors: Justin H. Kearns, Orjeta Taka
-
Patent number: 11515049Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: GrantFiled: January 11, 2021Date of Patent: November 29, 2022Assignees: TELADOC HEALTH, INC., IROBOT CORPORATIONInventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Publication number: 20220342421Abstract: An autonomous cleaning robot includes a controller configured to execute instructions to perform operations including moving the autonomous cleaning robot along a first portion of a path toward a waypoint, detecting, with a ranging sensor of the autonomous cleaning robot, an obstacle along the path between the first portion of the path and a second portion of the path, navigating the autonomous cleaning robot about the obstacle along a trajectory that maintains at least a clearance distance between the autonomous cleaning robot and the obstacle, and moving the autonomous cleaning robot along the second portion of the path.Type: ApplicationFiled: April 23, 2021Publication date: October 27, 2022Inventor: Justin H. Kearns
-
Patent number: 11468983Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a map, or by using a joystick or other peripheral device.Type: GrantFiled: March 12, 2020Date of Patent: October 11, 2022Assignees: TELADOC HEALTH, INC., IROBOT CORPORATIONInventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Publication number: 20220199253Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.Type: ApplicationFiled: March 14, 2022Publication date: June 23, 2022Applicants: InTouch Technologies, Inc., iRobot CorporationInventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Patent number: 11289192Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.Type: GrantFiled: August 21, 2019Date of Patent: March 29, 2022Assignees: INTOUCH TECHNOLOGIES, INC., IROBOT CORPORATIONInventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Publication number: 20220080600Abstract: Robot localization or mapping can be provided without requiring the expense or complexity an “at-a-distance” sensor, such as a camera, a LIDAR sensor, or the like. Landmark features can be created or matched using motion sensor data, such as odometry or gyro data or the like, and adjacency sensor data. Despite the relative ambiguity of adjacency-sensor derived landmark features, a particle filter approach can be configured to use such information, instead of requiring “at-a-distance” information from a constant stream of visual images from a camera, such as for robot localization or mapping. Landmark sequence constraints or a Wi-Fi signal strength map can be used together with the particle filter approach.Type: ApplicationFiled: September 15, 2020Publication date: March 17, 2022Inventors: Justin H. Kearns, Orjeta Taka
-
Publication number: 20210151201Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: ApplicationFiled: January 11, 2021Publication date: May 20, 2021Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Patent number: 10892052Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: GrantFiled: May 13, 2020Date of Patent: January 12, 2021Assignees: INTOUCH TECHNOLOGIES, INC., IROBOT CORPORATIONInventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
-
Publication number: 20200356101Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a map, or by using a joystick or other peripheral device.Type: ApplicationFiled: March 12, 2020Publication date: November 12, 2020Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
-
Publication number: 20200273565Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote presence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.Type: ApplicationFiled: May 13, 2020Publication date: August 27, 2020Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar