Patents by Inventor Justin Hanes

Justin Hanes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010033829
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Application
    Filed: June 25, 2001
    Publication date: October 25, 2001
    Applicant: The Penn Research Foundation, Inc.
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Patent number: 6254854
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: July 3, 2001
    Assignee: The Penn Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Patent number: 6136295
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm.sup.3 and a mass mean diameter between 5 .mu.m and 30 .mu.m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear .alpha.-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 .mu.m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: October 24, 2000
    Assignees: Massachusetts Institute of Technology, Penn State Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdell Aziz Ben-Jebria, Robert S. Langer
  • Patent number: 5874064
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm.sup.3 and a mass mean diameter between 5 .mu.m and 30 .mu.m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear .alpha.-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 .mu.m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: October 29, 1996
    Date of Patent: February 23, 1999
    Assignees: Massachusetts Institute of Technology, The Penn State Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdell Aziz Ben-Jebria, Robert S. Langer
  • Patent number: 5855913
    Abstract: Aerodynamically light particles incorporating a surfactant on the surface thereof for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm.sup.3 and a mass mean diameter between 5 .mu.m and 30 .mu.m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of poly(lactic acid) or poly(glycolic acid) or copolymers thereof. Alternatively, the particles may be formed solely of the drug or diagnostic agent and a surfactant. Surfactants can be incorporated on the particle surface for example by coating the particle after particle formation, or by incorporating the surfactant in the material forming the particle prior to formation of the particle. Exemplary surfactants include phosphoglycerides such as L-.alpha.-phosphatidylcholine dipalmitoyl.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: January 5, 1999
    Assignees: Massachusetts Instite of Technology, The Penn State Research Foundation
    Inventors: Justin Hanes, David A. Edwards, Carmen Evora, Robert Langer
  • Patent number: RE37053
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: February 13, 2001
    Assignee: Massachusetts Institute of Technology
    Inventors: Justin Hanes, David A. Edwards, Carmen Evora, Robert Langer