Patents by Inventor Justin J. Hill

Justin J. Hill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133077
    Abstract: A high-throughput method for identifying single crystal hexagonal-SiC off-axis surfaces that support surface chemistries and kinetics to selectively produce various epitaxial growth modes of the metastable 3C-SiC polytype is provided. In execution of the aforementioned method, the present invention also encompasses the use of a single crystal hexagonal-SiC domed substrate, and a method for manufacturing thereof. Said method for screening silicon carbide growth surfaces is comprised of: fabrication of a silicon carbide domed substrate; forming a step-terrace growth surface on the domed surface of said silicon carbide domed substrate by hydrogen etching; performing silicon carbide deposition upon said growth surface, thereby creating an silicon carbide epitaxial domed wafer; and characterization of said silicon carbide epitaxial domed wafer. Silicon carbide deposition upon a silicon carbide domed growth surface allows for the modulation of the supersaturation ratio under a single set of growth conditions.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 25, 2024
    Applicant: Mainstream Engineering Corporation
    Inventors: Jesse A. Johnson, II, Brian P. Tucker, Adam J. Duzik, Justin J. Hill
  • Patent number: 11930565
    Abstract: The present invention is an apparatus for curing composites out-of-autoclave and out-of-oven. The apparatus is a multilayered composite tool for shaping and curing composites. It also contains a sealant layer and composite resistive heating element on the tool's surface. This heating element provides heat to the composites during cure while binding it to the other layers, eliminating the need for external heat from autoclave and oven sources. A ceramic layer is applied to the top surface of the resistive heater for electrical insulation, heater protection and to provide a smooth surface for finish for the composite components being processed with the invention. A method for using the invention is also described. Finally, one embodiment of the invention is presented where a negative composite tool is created to apply additional pressure to the composite component during curing. This additional pressure enables the current invention to more closely mimic autoclave composite processing.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: March 12, 2024
    Assignee: Mainstream Engineering Corporation
    Inventors: Anna P. Skinner, Kayla S. O'Neill, Rachna C. Igwe, Philip Cox, Justin J. Hill
  • Patent number: 11879671
    Abstract: A process is disclosed for cooling a material that includes semiconductor nanoparticles in matrix material by anti-Stokes up-conversion. The semiconductor nanoparticle matrix is irradiated by a laser with a photonic wavelength matched to the anti-Stokes photoluminescence of the semiconductor nanoparticle bandgap. The semiconductor nanoparticles absorb the laser photon and phonons (heat) from lattice vibrations to photoluminescence photons with higher energy than the photon that were absorbed. A net cooling effect is generated from the lower energy and lower temperature in the material after anti-Stoke up-conversion.
    Type: Grant
    Filed: April 12, 2023
    Date of Patent: January 23, 2024
    Assignee: Mainstream Engineering Corporation
    Inventors: Gregory E. Chester, Ryan D. Reeves, Justin J. Hill
  • Patent number: 11879688
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed electromagnetic wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: January 23, 2024
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P. Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 11686510
    Abstract: A process is disclosed for cooling a material that includes semiconductor nanoparticles in matrix material by anti-Stokes up-conversion. The semiconductor nanoparticle matrix is irradiated by a laser with a photonic wavelength matched to the anti-Stokes photoluminescence of the semiconductor nanoparticle bandgap. The semiconductor nanoparticles absorb the laser photon and phonons (heat) from lattice vibrations to photoluminescence photons with higher energy than the photon that were absorbed. A net cooling effect is generated from the lower energy and lower temperature in the material after anti-Stoke up-conversion.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: June 27, 2023
    Assignee: Mainstream Engineering Corporation
    Inventors: Gregory E. Chester, Ryan D. Reeves, Justin J. Hill
  • Patent number: 11623866
    Abstract: A method encapsulates nanoscale material by producing a suspension of the nanostructure material in a first solvent using a micelle surrounding the nanostructure material. The micelle surrounding the suspended nanostructure material is swollen by adding to and mixing with the suspension an immiscible phase second solvent containing a precursor. The precursor is then reduced by adding a reducing reactant selectively soluble in the first solvent that reacts to the precursor containing reactant selectively solvated in the second solvent to encapsulate the nanostructure material. A metal-nanostructure composite can be provided by collecting and mixing the metal-shell encapsulated nanostructure product produced by the aforementioned method into a metal matrix.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: April 11, 2023
    Assignee: Mainstream Engineering Corporation
    Inventors: Gregory E. Chester, Anna P. Skinner, Justin J. Hill
  • Patent number: 11473846
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed electromagnetic wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: October 18, 2022
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 11262134
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed light wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid, the passages being optically non-transparent to the monitored or sensed light wavelengths. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: March 1, 2022
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P. Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 11221183
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed light wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid, the passages being optically non-transparent to the monitored or sensed light wavelengths. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: January 11, 2022
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P. Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 11199343
    Abstract: A process is disclosed for cooling a material that includes semiconductor nanoparticles in matrix material by anti-Stokes up-conversion. The semiconductor nanoparticle matrix is irradiated by a laser with a photonic wavelength matched to the anti-Stokes photoluminescence of the semiconductor nanoparticle bandgap. The semiconductor nanoparticles absorb the laser photon and phonons (heat) from lattice vibrations to photoluminescence photons with higher energy than the photon that were absorbed. A net cooling effect is generated from the lower energy and lower temperature in the material after anti-Stoke up-conversion.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: December 14, 2021
    Assignee: Mainstream Engineering Corporation
    Inventors: Gregory E. Chester, Ryan D. Reeves, Justin J. Hill
  • Patent number: 11143459
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed electromagnetic wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: October 12, 2021
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 11022378
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed light wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid, the passages being optically non-transparent to the monitored or sensed light wavelengths. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: June 1, 2021
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P. Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 11015874
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed light wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid, the passages being optically non-transparent to the monitored or sensed light wavelengths. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: May 25, 2021
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P. Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 10914529
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed light wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid, the passages being optically non-transparent to the monitored or sensed light wavelengths. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: February 9, 2021
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 10591221
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed light wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid, the passages being optically non-transparent to the monitored or sensed light wavelengths. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: March 17, 2020
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P. Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 10577684
    Abstract: A process is disclosed for restructuring crystalline grain structure and grain size of a material to produce an ultrafine-grain structure. An electron beam source is configured in relation to specific properties of a material forming a solid body to selectively irradiate a surface and a subsurface of that body with electrons at desired locations on the body and to create at least one selectively localized molten pool of defined size in the body. Heat is generated sufficiently rapidly by the beam source to create thermal gradients of sufficient magnitude to permit the body outside of the pool to act as a heat sink and rapidly cool the at least one molten pool, whereby an ultrafine-grain structure and grain size is produced by freezing grain growth upon occurrence of crystal nucleation.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: March 3, 2020
    Assignee: Mainstream Engineering Corporation
    Inventors: Ryan D. Reeves, Thomas M. Lasko, Justin J. Hill
  • Patent number: 9896338
    Abstract: A reactor and method for seeded growth of nano-products such as carbon nanotubes, wires and filaments in which selected precursors are introduced into the reactor which is heated to a temperature sufficient to induce nano-product formation from interaction between the precursor gases and a nanopore templated catalyst. The selected precursors are segregated in the reactor through a plate defining two chambers which are sealed off from each other except for a void space provided in the plate. The void space is closed off by a membrane having nanopores and a catalyst formed as a layer. Atomic transfer of material from the selected precursors to form the nano-products on the catalyst layer in the other of the chambers occurs by diffusion through the catalyst layer to form the nano-product on the other of the chambers absent a pressure drop between the two chambers.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: February 20, 2018
    Assignee: Mainstream Engineering Corporation
    Inventors: Gregory Chester, Justin J. Hill
  • Patent number: 9837599
    Abstract: An article composed of sintered particles is produced by depositing ligand-containing particles on a substrate, then scanning the substrate with an electron beam that generates sufficient surface and subsurface heating to substantially eliminate the ligands and melt or sinter the particles into a cohesive film with superior charge carrier properties. The particles are sintered or melted together to form a polycrystalline layer that is substantially ligand-free to form, for example, a film such as a continuous polycrystalline film. The scanning operation is conducted so as to heat treat a controllably localized region at and below a surface of the particles by selecting a rate of deposited energy at the region to exceed a rate of conduction away from the substrate.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: December 5, 2017
    Assignee: Mainstream Engineering Corporation
    Inventors: Ryan D. Reeves, Thomas M. Lasko, Justin J. Hill
  • Patent number: 9825214
    Abstract: An article composed of sintered particles is produced by depositing ligand-containing particles on a substrate, then scanning the substrate with an electron beam that generates sufficient surface and subsurface heating to substantially eliminate the ligands and melt or sinter the particles into a cohesive film with superior charge carrier properties. The particles are sintered or melted together to form a polycrystalline layer that is substantially ligand-free to form, for example, a film such as a continuous polycrystalline film. The scanning operation is conducted so as to heat treat a controllably localized region at and below a surface of the particles by selecting a rate of deposited energy at the region to exceed a rate of conduction away from the substrate.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: November 21, 2017
    Assignee: Mainstream Engineering Corporation
    Inventors: Ryan D. Reeves, Thomas M. Lasko, Justin J. Hill
  • Patent number: 9714800
    Abstract: A body comprising at least two components having one or more different properties and a method of producing the same are disclosed. One of the body components is in the form of particles with optional adhesive interlayers. A second of the components has a surface locally melted in a predetermined pattern and only to a predetermined depth by scanning an electron beam there across to incorporate the particles and form a metal composite film. Thereby, a predetermined volumetric concentration of the incorporated particles varies continuously from the locally melted surface so as to provide two surfaces in the body having different coefficients of thermal expansion.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 25, 2017
    Inventors: Thomas M. Lasko, Ted J. Amundsen, Justin J. Hill