Patents by Inventor Justin Larson

Justin Larson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944325
    Abstract: A system for robotic surgery makes use of an end-effector which has been configured so that a drill connected thereto is guided in its trajectory and limited in its advancement into an associated anatomical feature by a drill guide. The drill guide may be adjusted manually to engage a corresponding surface of the drill after its advancement by a pre-selected amount. The drill guide likewise includes features to guide the drill during trajectories having oblique angles relative to the surface of the anatomical feature associated with the medical procedure.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: April 2, 2024
    Assignee: Globus Medical, Inc.
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson, Stephen Cicchini, Ross Morris, Christopher Angelucci
  • Publication number: 20240071613
    Abstract: A safety system for providing a real-time health and safety assessment of a worker performing a task includes a telemetry and video database to store biometric telemetry data and video data of the worker performing the task, an environmental database to store environmental data associated with the worker performing the task, a threshold database to store a threshold for a safety parameter of the worker performing the task, a machine learning-based model to automatically determine the safety parameter of the worker based on the stored biometric telemetry data, video data, environmental data, and threshold, a dashboard to provide access to the stored biometric telemetry data, video data, environmental data, and threshold, and provide the real-time health and safety assessment of the worker based on the determined safety parameter, and a controller to control an operation of the safety system.
    Type: Application
    Filed: January 30, 2023
    Publication date: February 29, 2024
    Inventors: Justin SCHASSLER, Matthew Damon EMERY, Bradley LARSON, Luke ROBERTSON
  • Publication number: 20240008945
    Abstract: A drape covers robotic equipment in a medical environment to maintain sterility. The robotic equipment has an arm with an end surface which attaches to a tool, such as an active end effector. The drape has an extended drape portion that covers the arm, and a shaped drape portion that covers the end of the arm where the arm is clamped to the tool. The drape is clamped inside the clamp, and where the clamping occurs, the drape has a band of material that is reinforced by being thickened or by including a different material. The shape of the band corresponds to the portion of the arm that is clamped by the clamp.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: Kevin Zhang, Norbert Johnson, Mir Hussain, James Cascarano, Justin Larson, James Yau, Robert LeBoeuf, II, Michael Norcia
  • Patent number: 11850012
    Abstract: A system for robotic surgery makes use of an end-effector which has been configured so that any selected one of a group of surgical tools may be selectively connected to such end-effector. The end-effector makes use of a tool-insert locking mechanism which secures a selected one of the surgical tools at not only a respective, predetermined height and angle of orientation, but also at a rotational position relative to an anatomical feature of the patient. The tool-insert locking mechanism may include interchangeable inserts to interconnect multiple tools to the same end-effector. In this way, different robotic operations may be accomplished with less reconfiguration of the end-effector. The end-effector may also include a tool stop which has a sensor associated with a moveable stop mechanism which may be positioned to selectively inhibit tool insertion or end-effector movement.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: December 26, 2023
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson
  • Patent number: 11793588
    Abstract: A drape covers robotic equipment in a medical environment to maintain sterility. The robotic equipment has an arm with an end surface which attaches to a tool, such as an active end effector. The drape has an extended drape portion that covers the arm, and a shaped drape portion that covers the end of the arm where the arm is clamped to the tool. The drape is clamped inside the clamp, and where the clamping occurs, the drape has a band of material that is reinforced by being thickened or by including a different material. The shape of the band corresponds to the portion of the arm that is clamped by the clamp.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: October 24, 2023
    Assignee: Globus Medical, Inc.
    Inventors: Kevin Zhang, Norbert Johnson, Mir Hussain, James Cascarano, Justin Larson, James Yau, Robert LeBoeuf, Michael Norcia
  • Publication number: 20230141953
    Abstract: A surgical robot system includes a surgical robot, a robot arm connected to such surgical robot, and an end-effector connected to the robot arm. A registration fixture is used in conjunction with various registration systems in the surgical robot system. Such registration systems likewise include a detachable base in the form of a detachable dynamic reference base, along with an associated mount, the dynamic reference base and mount having certain features which permit the dynamic reference base to be selectively attached, detached, and reattached at different phases of an operation, whether pre-operative or intra-operative, and such successive attachments are done without the dynamic reference base, and tracking markers associated therewith, losing registration. Related methods allow for the more efficient and effective performance of operations by virtue of the dynamic reference base maintaining its registration during attachments and reattachments.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 11, 2023
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson
  • Patent number: 11571265
    Abstract: A surgical robot system includes a surgical robot, a robot arm connected to such surgical robot, and an end-effector connected to the robot arm. A registration fixture is used in conjunction with various registration systems in the surgical robot system. Such registration systems likewise include a detachable base in the form of a detachable dynamic reference base, along with an associated mount, the dynamic reference base and mount having certain features which permit the dynamic reference base to be selectively attached, detached, and reattached at different phases of an operation, whether pre-operative or intra-operative, and such successive attachments are done without the dynamic reference base, and tracking markers associated therewith, losing registration. Related methods allow for the more efficient and effective performance of operations by virtue of the dynamic reference base maintaining its registration during attachments and reattachments.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: February 7, 2023
    Assignee: Globus Medical Inc.
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson
  • Publication number: 20220330954
    Abstract: A system for robotic surgery makes use of an end-effector which has been configured so that a drill connected thereto is guided in its trajectory and limited in its advancement into an associated anatomical feature by a drill guide. The drill guide may be adjusted manually to engage a corresponding surface of the drill after its advancement by a pre-selected amount. The drill guide likewise includes features to guide the drill during trajectories having oblique angles relative to the surface of the anatomical feature associated with the medical procedure.
    Type: Application
    Filed: May 9, 2022
    Publication date: October 20, 2022
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson, Stephen Cicchini, Ross Morris, Christopher Angelucci
  • Publication number: 20220331029
    Abstract: A system for robotic surgery makes use of an end-effector which has been configured so that any selected one of a group of surgical tools may be selectively connected to such end-effector. The end-effector makes use of a tool-insert locking mechanism which secures a selected one of the surgical tools at not only a respective, predetermined height and angle of orientation, but also at a rotational position relative to an anatomical feature of the patient. The tool-insert locking mechanism may include interchangeable inserts to interconnect multiple tools to the same end-effector. In this way, different robotic operations may be accomplished with less reconfiguration of the end-effector. The end-effector may also include a tool stop which has a sensor associated with a moveable stop mechanism which may be positioned to selectively inhibit tool insertion or end-effector movement.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 20, 2022
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson
  • Patent number: 11317978
    Abstract: A system for robotic surgery makes use of an end-effector which has been configured so that any selected one of a group of surgical tools may be selectively connected to such end-effector. The end-effector makes use of a tool-insert locking mechanism which secures a selected one of the surgical tools at not only a respective, predetermined height and angle of orientation, but also at a rotational position relative to an anatomical feature of the patient. The tool-insert locking mechanism may include interchangeable inserts to interconnect multiple tools to the same end-effector. In this way, different robotic operations may be accomplished with less reconfiguration of the end-effector. The end-effector may also include a tool stop which has a sensor associated with a moveable stop mechanism which may be positioned to selectively inhibit tool insertion or end-effector movement.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: May 3, 2022
    Assignee: Globus Medical, Inc.
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson
  • Publication number: 20220087756
    Abstract: An end-effector for a surgical robot system may include an end-effector body and an optical sub-assembly. The optical sub-assembly may include a housing coupled to the end-effector body, the housing including a threaded portion. The optical sub-assembly may further include a window that is transparent to a predetermined range of light radiation wavelengths. The optical sub-assembly may further include a gasket disposed between the housing and the window. The optical sub-assembly may further include a threaded ring disposed over the window and threadedly engaging the threaded portion of the housing, the threaded ring compressing the gasket between the window and the housing to form a seal between the window and the housing. The optical sub-assembly may further include a light emitter configured to emit light in the predetermined range of light radiation wavelengths through the window.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: James Cascarano, Justin Larson, Zachary Olenio, Sritam Parashar Rout, Norbert Johnson
  • Patent number: 11278360
    Abstract: An end-effector for a surgical robot system may include an end-effector body and an optical sub-assembly. The optical sub-assembly may include a housing coupled to the end-effector body, the housing including a threaded portion. The optical sub-assembly may further include a window that is transparent to a predetermined range of light radiation wavelengths. The optical sub-assembly may further include a gasket disposed between the housing and the window. The optical sub-assembly may further include a threaded ring disposed over the window and threadedly engaging the threaded portion of the housing, the threaded ring compressing the gasket between the window and the housing to form a seal between the window and the housing. The optical sub-assembly may further include a light emitter configured to emit light in the predetermined range of light radiation wavelengths through the window.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 22, 2022
    Assignee: Globus Medical, Inc.
    Inventors: James Cascarano, Justin Larson, Zachary Olenio, Sritam Parashar Rout, Norbert Johnson
  • Publication number: 20220022990
    Abstract: A drape covers robotic equipment in a medical environment to maintain sterility. The robotic equipment has an arm with an end surface which attaches to a tool, such as an active end effector. The drape has an extended drape portion that covers the arm, and a shaped drape portion that covers the end of the arm where the arm is clamped to the tool. The drape is clamped inside the clamp, and where the clamping occurs, the drape has a band of material that is reinforced by being thickened or by including a different material. The shape of the band corresponds to the portion of the arm that is clamped by the clamp.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Inventors: Kevin Zhang, Norbert Johnson, Mir Hussain, James Cascarano, Justin Larson, James Yau, Robert LeBoeuf, Michael Norcia
  • Publication number: 20200297357
    Abstract: A system for robotic surgery makes use of an end-effector which has been configured so that a drill connected thereto is guided in its trajectory and limited in its advancement into an associated anatomical feature by a drill guide. The drill guide may be adjusted manually to engage a corresponding surface of the drill after its advancement by a pre-selected amount. The drill guide likewise includes features to guide the drill during trajectories having oblique angles relative to the surface of the anatomical feature associated with the medical procedure.
    Type: Application
    Filed: November 26, 2019
    Publication date: September 24, 2020
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson, Stephen Cicchini, Ross Morris, Christopher Angelucci
  • Publication number: 20200297435
    Abstract: A surgical robot system includes a surgical robot, a robot arm connected to such surgical robot, and an end-effector connected to the robot arm. A registration fixture is used in conjunction with various registration systems in the surgical robot system. Such registration systems likewise include a detachable base in the form of a detachable dynamic reference base, along with an associated mount, the dynamic reference base and mount having certain features which permit the dynamic reference base to be selectively attached, detached, and reattached at different phases of an operation, whether pre-operative or intra-operative, and such successive attachments are done without the dynamic reference base, and tracking markers associated therewith, losing registration. Related methods allow for the more efficient and effective performance of operations by virtue of the dynamic reference base maintaining its registration during attachments and reattachments.
    Type: Application
    Filed: January 8, 2020
    Publication date: September 24, 2020
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson
  • Publication number: 20200297439
    Abstract: A system for robotic surgery makes use of an end-effector which has been configured so that any selected one of a group of surgical tools may be selectively connected to such end-effector. The end-effector makes use of a tool-insert locking mechanism which secures a selected one of the surgical tools at not only a respective, predetermined height and angle of orientation, but also at a rotational position relative to an anatomical feature of the patient. The tool-insert locking mechanism may include interchangeable inserts to interconnect multiple tools to the same end-effector. In this way, different robotic operations may be accomplished with less reconfiguration of the end-effector. The end-effector may also include a tool stop which has a sensor associated with a moveable stop mechanism which may be positioned to selectively inhibit tool insertion or end-effector movement.
    Type: Application
    Filed: June 26, 2019
    Publication date: September 24, 2020
    Inventors: Hayden Cameron, Spiros Mantzavinos, Neil R. Crawford, Sanjay Joshi, Norbert Johnson, James Cascarano, Justin Larson
  • Publication number: 20200155241
    Abstract: An end-effector for a surgical robot system may include an end-effector body and an optical sub-assembly. The optical sub-assembly may include a housing coupled to the end-effector body, the housing including a threaded portion. The optical sub-assembly may further include a window that is transparent to a predetermined range of light radiation wavelengths. The optical sub-assembly may further include a gasket disposed between the housing and the window. The optical sub-assembly may further include a threaded ring disposed over the window and threadedly engaging the threaded portion of the housing, the threaded ring compressing the gasket between the window and the housing to form a seal between the window and the housing. The optical sub-assembly may further include a light emitter configured to emit light in the predetermined range of light radiation wavelengths through the window.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: James Cascarano, Justin Larson, Zachary Olenio, Sritam Parashar Rout, Norbert Johnson
  • Patent number: 10562579
    Abstract: A seal for a meter housing with an interior portion is disclosed. The seal includes an axially inner surface configured to face the interior portion of the meter housing and an axially outer surface configured to face away from the interior portion of the meter housing. At least one of the axially inner surface and the axially outer surface is configured to seal against a portion of the housing. The seal further includes a diaphragm defined axially intermediate the axially inner surface and the axially outer surface and a fluid passageway defined through a portion of the diaphragm. The fluid passageway is configured to move between an open position and a closed position in response to a pressure differential between the interior portion of the housing and an exterior portion.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: February 18, 2020
    Assignee: Polaris Industries Inc.
    Inventors: Geoffrey Wotton, Mark Andrew Powell, Benjamin Travis Chambers, Justin Larson
  • Patent number: 10466403
    Abstract: An apparatus and method for assembling a display device to which is coupled a light guide that has smooth surfaces for light-transmission and at least one surface that is for light scattering and internal reflection. The method includes depositing a reflective coating on that surface, and installing the display device with coupled light guide in an interior of a meter housing or casing. A portion of the casing interior is filled with a component, such as epoxy, for sealing the case interior to protect the display device and light guide against water and dust penetration. All surfaces of the light guide are protected from direct contact with the epoxy. This approach greatly simplifies the assembly process and yields a robust display that also prevents light leakage from the light guide.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: November 5, 2019
    Assignee: Polaris Industries Inc.
    Inventors: Travis Chambers, Justin Larson
  • Patent number: 10175068
    Abstract: Disclosed is a pressure compensator for a housing compartment that includes a housing wall that has an opening between an interior zone that is inside of the compartment and an exterior zone that is outside of the compartment. The housing wall also includes an annulus that defines one portion of the opening. A seal engages the annulus and is seated in the opening to seal the opening, the seal including a flexible diaphragm having a normally closed slit therethrough. The seal is configured so that the diaphragm is normally compressed in a first direction that urges the slit closed when the seal is engaged with the annulus. The diaphragm is arranged so that a pressure difference between the interior zone and exterior zone urges the diaphragm to flex in a direction for opening a slit thus creates a pathway between the interior zone and the exterior zone, thereby reducing the pressure difference.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: January 8, 2019
    Assignee: Polaris Industries Inc.
    Inventors: Benjamin T. Chambers, Geoffrey Wotton, Justin Larson