Patents by Inventor Justin Lerman

Justin Lerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180228621
    Abstract: Assemblies of one or more implant structures make possible the achievement of diverse interventions involving the fusion and/or stabilization of the SI-joint and/or lumbar and sacral vertebra in a non-invasive manner, with minimal incision, and without the necessitating the removing the intervertebral disc. The representative lumbar spine interventions, which can be performed on adults or children, include, but are not limited to, SI-joint fusion or fixation; lumbar interbody fusion; translaminar lumbar fusion; lumbar facet fusion; trans-iliac lumbar fusion; and the stabilization of a spondylolisthesis.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Mark A. REILEY, Justin LERMAN, Richard G. MAULDIN
  • Patent number: 9949843
    Abstract: Assemblies of one or more implant structures make possible the achievement of diverse interventions involving the fusion and/or stabilization of the SI-joint and/or lumbar and sacral vertebra in a non-invasive manner, with minimal incision, and without the necessitating the removing the intervertebral disc. The representative lumbar spine interventions, which can be performed on adults or children, include, but are not limited to, SI-joint fusion or fixation; lumbar interbody fusion; translaminar lumbar fusion; lumbar facet fusion; trans-iliac lumbar fusion; and the stabilization of a spondylolisthesis.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: April 24, 2018
    Assignee: SI-Bone Inc.
    Inventors: Mark A. Reiley, Justin Lerman, Richard G. Mauldin
  • Patent number: 9486264
    Abstract: First and second bone segments separated by a fracture line or joint can be fixated or fused by creating an insertion path through the first bone segment, through the fracture line or joint, and into the second bone segment. An anchor body is introduced through the insertion path. The distal end of the anchor body is anchored in the interior region of the second bone segment. An elongated implant structure is passed over the anchor body to span the fracture line or joint between the bone segments. The proximal end of the anchor body is anchored to an exterior region of the first bone segment to place, in concert with the anchored distal end, the anchor body in compression, to thereby compress and fixate the bone segments relative to the fracture line or joint.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: November 8, 2016
    Assignee: SI-Bone Inc.
    Inventors: Mark A. Reiley, Justin Lerman, Richard G. Mauldin
  • Publication number: 20160302941
    Abstract: Assemblies of one or more implant structures make possible the achievement of diverse interventions involving the fusion and/or stabilization of the SI-joint and/or lumbar and sacral vertebra in a non-invasive manner, with minimal incision, and without the necessitating the removing the intervertebral disc. The representative lumbar spine interventions, which can be performed on adults or children, include, but are not limited to, SI-joint fusion or fixation; lumbar interbody fusion; translaminar lumbar fusion; lumbar facet fusion; trans-iliac lumbar fusion; and the stabilization of a spondylolisthesis.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Mark A. REILEY, Justin LERMAN, Richard G. MAULDIN
  • Publication number: 20140249589
    Abstract: First and second bone segments separated by a fracture line or joint can be fixated or fused by creating an insertion path through the first bone segment, through the fracture line or joint, and into the second bone segment. An anchor body is introduced through the insertion path. The distal end of the anchor body is anchored in the interior region of the second bone segment. An elongated implant structure is passed over the anchor body to span the fracture line or joint between the bone segments. The proximal end of the anchor body is anchored to an exterior region of the first bone segment to place, in concert with the anchored distal end, the anchor body in compression, to thereby compress and fixate the bone segments relative to the fracture line or joint.
    Type: Application
    Filed: May 9, 2014
    Publication date: September 4, 2014
    Inventors: Mark A. REILEY, Justin LERMAN, Richard G. MAULDIN
  • Patent number: 8734462
    Abstract: First and second bone segments separated by a fracture line or joint can be fixated or fused by creating an insertion path through the first bone segment, through the fracture line or joint, and into the second bone segment. An anchor body is introduced through the insertion path. The distal end of the anchor body is anchored in the interior region of the second bone segment. An elongated implant structure is passed over the anchor body to span the fracture line or joint between the bone segments. The proximal end of the anchor body is anchored to an exterior region of the first bone segment to place, in concert with the anchored distal end, the anchor body in compression, to thereby compress and fixate the bone segments relative to the fracture line or joint.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: May 27, 2014
    Assignee: SI-Bone Inc.
    Inventors: Mark A. Reiley, Justin Lerman, Richard G. Mauldin
  • Publication number: 20130184769
    Abstract: First and second bone segments separated by a fracture line or joint can be fixated or fused by creating an insertion path through the first bone segment, through the fracture line or joint, and into the second bone segment. An anchor body is introduced through the insertion path. The distal end of the anchor body is anchored in the interior region of the second bone segment. An elongated implant structure is passed over the anchor body to span the fracture line or joint between the bone segments. The proximal end of the anchor body is anchored to an exterior region of the first bone segment to place, in concert with the anchored distal end, the anchor body in compression, to thereby compress and fixate the bone segments relative to the fracture line or joint.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 18, 2013
    Inventors: Mark A. REILEY, Justin LERMAN, Richard G. MAULDIN
  • Patent number: 8388667
    Abstract: First and second bone segments separated by a fracture line or joint can be fixated or fused by creating an insertion path through the first bone segment, through the fracture line or joint, and into the second bone segment. An anchor body is introduced through the insertion path. The distal end of the anchor body is anchored in the interior region of the second bone segment. An elongated implant structure is passed over the anchor body to span the fracture line or joint between the bone segments. The proximal end of the anchor body is anchored to an exterior region of the first bone segment to place, in concert with the anchored distal end, the anchor body in compression, to thereby compress and fixate the bone segments relative to the fracture line or joint. A bony in-growth or through-growth region on the implant structure accelerates the fixation or fusion of the first and second bone segments held in compression and fixated by the anchor body.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: March 5, 2013
    Assignee: Si-Bone, Inc.
    Inventors: Mark A. Reiley, Justin Lerman, Richard G. Mauldin
  • Publication number: 20110087296
    Abstract: First and second bone segments separated by a fracture line or joint can be fixated or fused by creating an insertion path through the first bone segment, through the fracture line or joint, and into the second bone segment. An anchor body is introduced through the insertion path. The distal end of the anchor body is anchored in the interior region of the second bone segment. An elongated implant structure is passed over the anchor body to span the fracture line or joint between the bone segments. The proximal end of the anchor body is anchored to an exterior region of the first bone segment to place, in concert with the anchored distal end, the anchor body in compression, to thereby compress and fixate the bone segments relative to the fracture line or joint. A bony in-growth or through-growth region on the implant structure accelerates the fixation or fusion of the first and second bone segments held in compression and fixated by the anchor body.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 14, 2011
    Inventors: Mark A. Reiley, Justin Lerman, Richard G. Mauldin