Patents by Inventor Justin Lloyd Kreuzer

Justin Lloyd Kreuzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11966169
    Abstract: A system includes a radiation source, first and second phased arrays, and a detector. The first and second phased arrays include optical elements, a plurality of ports, waveguides, and phase modulators. The optical elements radiate radiation waves. The waveguides guide radiation from a port of the plurality of ports to the optical elements. Phase modulators adjust phases of the radiation waves. One or both of the first and second phased arrays form a first beam and/or a second beam of radiation directed toward a target structure based on the port coupled to the radiation source. The detector receives radiation scattered by the target structure and generates a measurement signal based on the received radiation.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: April 23, 2024
    Assignee: ASML Holding N.V.
    Inventors: Mohamed Swillam, Tamer Mohamed Tawfik Ahmed Elazhary, Stephen Roux, Yuxiang Lin, Justin Lloyd Kreuzer
  • Publication number: 20240094641
    Abstract: The system includes a radiation source, a diffractive element, an optical system, a detector, and a processor. The radiation source generates radiation. The diffractive element diffracts the radiation to generate a first beam and a second beam. The first beam includes a first non-zero diffraction order and the second beam includes a second non-zero diffraction order that is different from the first non-zero diffraction order. The optical system receives a first scattered beam and a second scattered radiation beam from a target structure and directs the first scattered beam and the second scattered beam towards a detector. The detector generates a detection signal. The processor analyzes the detection signal to determine a target structure property based on at least the detection signal. The first beam is attenuated with respect to the second beam or the first scattered beam is purposely attenuated with respect to the second scattered beam.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 21, 2024
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Justin Lloyd KREUZER, Simon Reinald HUISMAN, Sebastianus Adrianus GOORDEN, Filippo ALPEGGIANI
  • Publication number: 20240077308
    Abstract: A metrology system includes a radiation source, an adjustable diffractive element, an optical system, an optical element, and a processor. The radiation source generates radiation. The adjustable diffractive element diffracts the radiation to generate first and second beams of radiation. The first and second beams have first and second different non-zero diffraction orders, respectively. The optical system directs the first and second beams toward a target structure such that first and second scattered beams of radiation are generated based on the first and second beams, respectively. The metrology system adjusts a phase difference of the first and second scattered beams. The optical element interferes the first and second scattered beams at an imaging detector that generates a detection signal. The processor receives and analyzes the detection signal to determine a property of the target structure based on the adjusted phase difference.
    Type: Application
    Filed: January 4, 2022
    Publication date: March 7, 2024
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX, Michael Leo NELSON, Muhsin ERALP
  • Publication number: 20240027913
    Abstract: A metrology system (400) includes a multi-source radiation system. The multi-source radiation system includes a waveguide device (502) and the multi-source radiation system is configured to generate one or more beams of radiation. The metrology system (400) further includes a coherence adjuster (500) including a multimode waveguide device (504). The multimode waveguide device (504) includes an input configured to receive the one or more beams of radiation from the multi-source radiation system (514) and an output (518) configured to output a coherence adjusted beam of radiation for irradiating a target (418). The metrology system (400) further includes an actuator (506) coupled to the waveguide device (502) and configured to actuate the waveguide device (502) so as to change an impingement characteristic of the one or more beams of radiation at the input of the multimode waveguide device (504).
    Type: Application
    Filed: December 2, 2021
    Publication date: January 25, 2024
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Sergei SOKOLOV, Simon Reinald HUISMAN, Jin LIAN, Sebastianus Adrianus GOORDEN, Muhsin ERALP, Henricus Petrus Maria PELLEMANS, Justin Lloyd KREUZER
  • Patent number: 11841628
    Abstract: An apparatus for and method of sensing multiple alignment marks in which the optical axis of a detector is divided into multiple axes each of which can essentially simultaneously detect a separate alignment mark to generate a signal which can then be multiplexed and presented to a single detector or multiple detectors thus permitting more rapid detection of multiple marks.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: December 12, 2023
    Assignee: ASML Holding N.V.
    Inventors: Krishanu Shome, Justin Lloyd Kreuzer
  • Publication number: 20230273531
    Abstract: A metrology system comprises a radiation source, an optical element, first and second detectors, an integrated optical device comprising a multimode waveguide, and a processor. The radiation source generates radiation. The optical element directs radiation toward a target to generate scattered radiation from the target. The first detector receives a first portion of the scattered radiation and generates a first detection signal based on the received first portion. The multimode waveguide interferes a second portion of the scattered radiation using modes of the multimode waveguide. The second detector receives the interfered second portion and generates a second detection signal based on the received interfered second portion. The processor receives the first and second detection signals. The processor analyzes the received first portion, the received interfered second portion, and a propagation property of the multimode waveguide. The processor determines the property of the target based on the analysis.
    Type: Application
    Filed: June 29, 2021
    Publication date: August 31, 2023
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX
  • Publication number: 20230266681
    Abstract: Systems, apparatuses, and methods are provided for determining the alignment of a substrate. An example method can include emitting a multi-wavelength radiation beam including a first wavelength and a second wavelength toward a region of a surface of a substrate. The example method can further include measuring a first diffracted radiation beam indicative of first order diffraction at the first wavelength in response to an irradiation of the region by the multi-wavelength radiation beam. The example method can further include measuring a second diffracted radiation beam indicative of first order diffraction at the second wavelength in response to the irradiation of the region by the multi-wavelength radiation beam. Subsequently, the example method can include generating, based on the measured first set of photons and the measured second set of photons, an electronic signal for use in determining an alignment position of the substrate.
    Type: Application
    Filed: June 9, 2021
    Publication date: August 24, 2023
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX
  • Publication number: 20230266255
    Abstract: Systems, apparatuses, and methods are provided for detecting a particle on a substrate surface. An example method can include receiving, by a grating structure, coherent radiation from a radiation source. The method can further include generating, by the grating structure, a focused coherent radiation beam based on the coherent radiation. The method can further include transmitting, by the grating structure, the focused coherent radiation beam toward a region of a surface of a substrate. The method can further include receiving, by the grating structure, photons scattered from the region in response to illuminating the region with the focused coherent radiation beam. The method can further include measuring, by a photodetector, the photons received by the grating structure. The method can further include generating, by the photodetector and based on the measured photons, an electronic signal for detecting a particle located in the region of the surface of the substrate.
    Type: Application
    Filed: June 9, 2021
    Publication date: August 24, 2023
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Ilse VAN WEPEREN, Arjan Johannes Anton BEUKMAN, Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX
  • Patent number: 11662198
    Abstract: An inspection apparatus, including: an optical system configured to provide a beam of radiation to a surface to be measured and to receive redirected radiation from the surface; and a detection system configured to measure the redirected radiation, wherein the optical system includes an optical element to process the radiation, the optical element including a Mac Neille-type multilayer polarizing coating configured to produce a reduced chromatic offset of the radiation.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: May 30, 2023
    Assignee: ASML Holding N.V.
    Inventors: Parag Vinayak Kelkar, Justin Lloyd Kreuzer
  • Publication number: 20230142459
    Abstract: An inspection system (1600), a lithography apparatus, and an inspection method are provided. The inspection system (1600) includes an illumination system (1602), a detection system (1606), and processing circuitry (1622). The illumination system generates a first illumination beam (1610) at a first wavelength and a second illumination beam (1618) at a second wavelength. The first wavelength is different from the second wavelength. The illumination system irradiates an object (1612) simultaneously with the first illumination beam and the second illumination beam. The detection system receives radiation (1620) scattered by a particle (1624) present at a surface (1626) of the object at the first wavelength. The detection system generates a detection signal. The processing circuitry determines a characteristic of the particle based on the detection signal.
    Type: Application
    Filed: April 8, 2021
    Publication date: May 11, 2023
    Applicant: ASML Holding N.V.
    Inventors: Andrew JUDGE, Ravi Chaitanya KALLURI, Michal Emanuel PAWLOWSKI, James Hamilton WALSH, Justin Lloyd KREUZER
  • Publication number: 20230116318
    Abstract: An apparatus for and method of sensing multiple alignment marks in which the optical axis of a detector is divided into multiple axes each of which can essentially simultaneously detect a separate alignment mark to generate a signal which can then be multiplexed and presented to a single detector or multiple detectors thus permitting more rapid detection of multiple marks.
    Type: Application
    Filed: January 21, 2021
    Publication date: April 13, 2023
    Applicant: ASML Holding N.V.
    Inventors: Krishanu SHOME, Justin Lloyd KREUZER
  • Publication number: 20230055116
    Abstract: An inspection system includes a radiation source that generates a beam of radiation and irradiates a first surface of an object, defining a region of the first surface of the object. The radiation source also irradiates a second surface of the object, defining a region of the second surface, wherein the second surface is at a different depth level within the object than the first surface. The inspection system may also include a detector that defines a field of view (FOV) of the first surface including the region of the first surface, and receives radiation scattered from the region of the first surface and the region of the second surface. The inspection system may also include a processor that discards image data not received from the region of the first surface, and constructs a composite image comprising the image data from across the region of the first surface.
    Type: Application
    Filed: January 21, 2021
    Publication date: February 23, 2023
    Applicant: ASML Holding N.V.
    Inventors: Peter Conrad KOCHERSPERGER, Christopher Michael DOHAN, Justin Lloyd KREUZER, Michal Emanuel PAWLOWSKI, Aage BENDIKSEN, Kirill Urievich SOBOLEV, James Hamilton WALSH, Roberto B. WIENER, Arun Mahadevan VENKATARAMAN
  • Publication number: 20230008139
    Abstract: A detection system (200) includes an illumination system (210), a first optical system (232), a phase modulator (220), a lock-in detector (255), and a function generator (230). The illumination system is configured to transmit an illumination beam (218) along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target (204) on a substrate (202). The first optical system is further configured to transmit a signal beam including diffraction order sub-beams (222, 224, 226) that are diffracted by the diffraction target. The phase modulator is configured to modulate the illumination beam or the signal beam based on a reference signal. The lock-in detector is configured to collect the signal beam and to measure a characteristic of the diffraction target based on the signal beam and the reference signal. The function generator is configured to generate the reference signal for the phase modulator and the lock-in detector.
    Type: Application
    Filed: November 18, 2020
    Publication date: January 12, 2023
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Mohamed SWILLAM, Simon Reinald HUISMAN, Justin Lloyd KREUZER
  • Patent number: 11531280
    Abstract: An apparatus and system for determining alignment of a substrate in which a periodic alignment mark is illuminated with spatially coherent radiation which is then provided to a compact integrated optical device to create self images of the alignment mark which may be manipulated (e.g., mirrored, polarized) and combined to obtain information on the position of the mark and distortions within the mark. Also disclosed is a system for determining alignment of a substrate in which a periodic alignment mark is illuminated with spatially coherent radiation which is then provided to an optical fiber arrangement to obtain information such as the position of the mark and distortions within the mark.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: December 20, 2022
    Assignees: ASML HOLDING N.V., ASML NETHERLANDS B.V.
    Inventors: Tamer Mohamed Tawfik Ahmed Mohamed Elazhary, Justin Lloyd Kreuzer, Franciscus Godefridus Casper Bijnen, Krishanu Shome
  • Patent number: 11526091
    Abstract: Apparatus for, and method of, measuring a parameter of an alignment mark on a substrate in which an optical system is arranged to receive at least one diffraction order from the alignment mark and the diffraction order is modulated at a pupil or a wafer conjugate plane of the optical system, a solid state optical device is arranged to receive the modulated diffraction order, and a spectrometer is arranged to receive the modulated diffraction order from the solid state optical device and to determine an intensity of one or more spectral components in the modulated diffraction order.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: December 13, 2022
    Assignee: ASML Holding N.V.
    Inventors: Tamer Mohamed Tawfik Ahmed Mohamed Elazhary, Justin Lloyd Kreuzer, Yuxiang Lin, Kirill Urievich Sobolev
  • Publication number: 20220350260
    Abstract: Disclosed is a method for a metrology measurement on an area of a substrate comprising at least a portion of a target structure. The method comprises receiving a radiation information representing a portion of radiation scattered by the are, and using a filter in a Fourier domain for removing or suppressing at least a portion of the received radiation information that does not relate to radiation that has been scattered by the target structure for obtaining a filtered radiation information for the metrology measurement, wherein characteristics of the filter are based on target information about the target structure.
    Type: Application
    Filed: September 3, 2020
    Publication date: November 3, 2022
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Armand Eugene Albert, Justin Lloyd KREUZER, Nikhil MEHTA, Patrick WARNAAR, Vasco Tomas TENNER, Patricius Aloysius Jacobus TINNEMANS, Hugo Augustinus Joseph CRAMER
  • Publication number: 20220283515
    Abstract: A method of determining an overlay measurement associated with a substrate and a system to obtain an overlay measurement associated with a patterning process. A method for determining an overlay measurement may be used in a lithography patterning process. The method includes generating a diffraction signal by illuminating a first overlay pattern and a second overlay pattern using a coherent beam. The method also includes obtaining an interference pattern based on the diffraction signal. The method further includes determining an overlay measurement between the first overlay pattern and the second overlay pattern based on the interference pattern.
    Type: Application
    Filed: August 25, 2020
    Publication date: September 8, 2022
    Applicants: ASML HOLDING N.V., ASML NETHERLANDS B.V.
    Inventors: Tamer Mohamed Tawfik Ahmed Mohamed ELAZHARY, Simon Reinald HUISMAN, Justin Lloyd KREUZER, Sebastianus Adrianus GOORDEN
  • Publication number: 20220179331
    Abstract: Apparatus for, and method of, measuring a parameter of an alignment mark on a substrate in which an optical system is arranged to receive at least one diffraction order from the alignment mark and the diffraction order is modulated at a pupil or a wafer conjugate plane of the optical system, a solid state optical device is arranged to receive the modulated diffraction order, and a spectrometer is arranged to receive the modulated diffraction order from the solid state optical device and to determine an intensity of one or more spectral components in the modulated diffraction order.
    Type: Application
    Filed: March 25, 2020
    Publication date: June 9, 2022
    Applicant: ASML HOLDING N.V.
    Inventors: Tamer Mohamed Tawfik Ahmed Mohamed ELAZHARY, Justin Lloyd KREUZER, Yuxiang LIN, Kirill Urievich SOBOLEV
  • Publication number: 20220100109
    Abstract: An apparatus for and method of determining the alignment of a substrate in which a multiple alignment marks are simultaneously illuminated with spatially coherent radiation and the light from the illuminated marks is collected in parallel to obtain information on the positions of the marks and distortions within the marks.
    Type: Application
    Filed: December 12, 2019
    Publication date: March 31, 2022
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Tamer Mohamed Tawfik Ahmed Mohamed ELAZHARY, Franciscus BIJNEN, Alessandro POLO, Kirill Urievich SOBOLEV, Simon Reinald HUISMAN, Justin Lloyd KREUZER
  • Patent number: 11175593
    Abstract: An alignment sensor apparatus includes an illumination system, a first optical system, a second optical system, a detector system, and a processor. The illumination system is configured to transmit an illumination beam along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target on a substrate. The second optical system includes a first polarizing optic configured to separate and transmit an irradiance distribution. The detector system is configured to measure a center of gravity of the diffraction target based on the irradiance distribution outputted from a first polarization branch and a second polarization branch. The processor is configured to measure a shift in the center of gravity of the diffraction target caused by an asymmetry variation in the diffraction target and determine a sensor response function of the alignment sensor apparatus based on the center of gravity shift.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: November 16, 2021
    Assignees: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Simon Reinald Huisman, Tamer Mohamed Tawfik Ahmed Mohamed Elazhary, Yuxiang Lin, Vu Quang Tran, Sebastianus Adrianus Goorden, Justin Lloyd Kreuzer, Christopher John Mason, Igor Matheus Petronella Aarts, Krishanu Shome, Irit Tzemah