Patents by Inventor Justin Max Scheiner
Justin Max Scheiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240054998Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: ApplicationFiled: October 12, 2023Publication date: February 15, 2024Applicant: Google LLCInventors: Justin Max Scheiner, Petar Aleksic
-
Patent number: 11804218Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: GrantFiled: February 10, 2021Date of Patent: October 31, 2023Assignee: Google LLCInventors: Justin Max Scheiner, Petar Aleksic
-
Publication number: 20210166682Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: ApplicationFiled: February 10, 2021Publication date: June 3, 2021Applicant: Google LLCInventors: Justin Max Scheiner, Petar Aleksic
-
Patent number: 10957312Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: GrantFiled: December 31, 2019Date of Patent: March 23, 2021Assignee: Google LLCInventors: Justin Max Scheiner, Petar Aleksic
-
Publication number: 20200211537Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: ApplicationFiled: December 31, 2019Publication date: July 2, 2020Inventors: Justin Max Scheiner, Petar Aleksic
-
Patent number: 10565987Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: GrantFiled: March 11, 2019Date of Patent: February 18, 2020Assignee: Google LLCInventors: Justin Max Scheiner, Petar Aleksic
-
Publication number: 20190272824Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: ApplicationFiled: March 11, 2019Publication date: September 5, 2019Inventors: Justin Max Scheiner, Petar Aleksic
-
Patent number: 10229675Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: GrantFiled: December 30, 2016Date of Patent: March 12, 2019Assignee: Google LLCInventors: Justin Max Scheiner, Petar Aleksic
-
Publication number: 20170358297Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.Type: ApplicationFiled: December 30, 2016Publication date: December 14, 2017Inventors: Justin Max Scheiner, Petar Aleksic