Patents by Inventor Justin Max Scheiner

Justin Max Scheiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240054998
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 15, 2024
    Applicant: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 11804218
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: October 31, 2023
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20210166682
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 3, 2021
    Applicant: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 10957312
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: March 23, 2021
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20200211537
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 2, 2020
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 10565987
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 18, 2020
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20190272824
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 5, 2019
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 10229675
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: March 12, 2019
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20170358297
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: December 30, 2016
    Publication date: December 14, 2017
    Inventors: Justin Max Scheiner, Petar Aleksic