Patents by Inventor Justin P. Opatkiewicz

Justin P. Opatkiewicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9677952
    Abstract: Input devices are provided. In accordance with an example embodiment, an input device includes an interface layer that flexes in response to pressure, a plurality of sense electrodes, a dielectric between the sense electrodes and the interface layer, and interconnecting circuitry. The dielectric compresses or expands in response to movement of the interface layer, and exhibits dielectric characteristics that vary based upon a state of compression of the dielectric. The interconnecting circuitry is to the sense electrodes and provides an output indicative of both the position of each sense electrode and an electric characteristic at each sense electrode that provides an indication of pressure applied to the dielectric adjacent the respective sense electrodes.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 13, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Zhenan Bao, Chee-Keong Tee, Stefan Christian Bernhardt Mannsfeld, Justin P. Opatkiewicz
  • Publication number: 20160041652
    Abstract: Input devices are provided. In accordance with an example embodiment, an input device includes an interface layer that flexes in response to pressure, a plurality of sense electrodes, a dielectric between the sense electrodes and the interface layer, and interconnecting circuitry. The dielectric compresses or expands in response to movement of the interface layer, and exhibits dielectric characteristics that vary based upon a state of compression of the dielectric. The interconnecting circuitry is to the sense electrodes and provides an output indicative of both the position of each sense electrode and an electric characteristic at each sense electrode that provides an indication of pressure applied to the dielectric adjacent the respective sense electrodes.
    Type: Application
    Filed: August 17, 2015
    Publication date: February 11, 2016
    Inventors: Zhenan Bao, Chee-Keong Tee, Stefan Christian Bernhardt Mannsfeld, Justin P. Opatkiewicz
  • Patent number: 9112058
    Abstract: Input devices are provided. In accordance with an example embodiment, an input device includes an interface layer that flexes in response to pressure, a plurality of sense electrodes, a dielectric between the sense electrodes and the interface layer, and interconnecting circuitry. The dielectric compresses or expands in response to movement of the interface layer, and exhibits dielectric characteristics that vary based upon a state of compression of the dielectric. The interconnecting circuitry is coupled to the sense electrodes and provides an output indicative of both the position of each sense electrode and an electric characteristic at each sense electrode that provides an indication of pressure applied to the dielectric adjacent the respective sense electrodes.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: August 18, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Zhenan Bao, Benjamin Chee-Keong Tee, Stefan Christian Bernhardt Mannsfeld, Justin P. Opatkiewicz
  • Patent number: 9085458
    Abstract: Nanotube electronic devices exhibit selective affinity to disparate nanotube types. According to an example embodiment, a semiconductor device exhibits a treated substrate that selectively interacts (e.g., chemically) with nanotubes of a first type, relative to nanotubes of a second type, the respective types including semiconducting-type and metallic-type nanotubes. The selective interaction is used to set device configuration characteristics based upon the nanotube type. This selective-interaction approach can be used to set the type, and/or characteristics of nanotubes in the device.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: July 21, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Zhenan Bao, Melburne Lemieux, Justin P. Opatkiewicz, Soumendra N. Barman
  • Publication number: 20120258569
    Abstract: Nanotube electronic devices exhibit selective affinity to disparate nanotube types. According to an example embodiment, a semiconductor device exhibits a treated substrate that selectively interacts (e.g., chemically) with nanotubes of a first type, relative to nanotubes of a second type, the respective types including semiconducting-type and metallic-type nanotubes. The selective interaction is used to set device configuration characteristics based upon the nanotube type. This selective-interaction approach can be used to set the type, and/or characteristics of nanotubes in the device.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Inventors: Zhenan Bao, Melburne Lemieux, Justin P. Opatkiewicz, Soumendra N. Barman
  • Patent number: 8237155
    Abstract: Nanotube electronic devices exhibit selective affinity to disparate nanotube types. According to an example embodiment, a semiconductor device exhibits a treated substrate that selectively interacts (e.g., chemically) with nanotubes of a first type, relative to nanotubes of a second type, the respective types including semiconducting-type and metallic-type nanotubes. The selective interaction is used to set device configuration characteristics based upon the nanotube type. This selective-interaction approach can be used to set the type, and/or characteristics of nanotubes in the device.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: August 7, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Zhenan Bao, Melburne Lemieux, Justin P. Opatkiewicz, Soumendra N. Barman
  • Publication number: 20100001255
    Abstract: Nanotube electronic devices exhibit selective affinity to disparate nanotube types. According to an example embodiment, a semiconductor device exhibits a treated substrate that selectively interacts (e.g., chemically) with nanotubes of a first type, relative to nanotubes of a second type, the respective types including semiconducting-type and metallic-type nanotubes. The selective interaction is used to set device configuration characteristics based upon the nanotube type. This selective-interaction approach can be used to set the type, and/or characteristics of nanotubes in the device.
    Type: Application
    Filed: June 26, 2009
    Publication date: January 7, 2010
    Inventors: Zhenan Bao, Melburne Lemieux, Justin P. Opatkiewicz, Soumendra N. Barman