Patents by Inventor Justin R. McDade

Justin R. McDade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11592493
    Abstract: A method for battery capacity estimation is provided. The method includes monitoring a sensor, collecting a plurality of data points including a voltage-based state of charge value and an integrated current value, defining within the data points a first data set collected during a first time period and a second data set collected during a second time period, determining an integrated current error related to the second data set, comparing the integrated current error related to the second data set to a threshold integrated current error. When the error related to the second data set exceeds the threshold, the method further includes resetting the second data set based upon an integrated current value from the first time period. The method further includes combining the data sets to create a combined data set and determining a voltage slope capacity estimate as a change in integrated current versus voltage-based state of charge.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: February 28, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Alfred Zhang, Justin Bunnell, Garrett M. Seeman, Jeffrey S. Piasecki, Charles W. Wampler, Brian J. Koch, Jing Gao, Jeffrey A. Bednar, Xiumei Guo, Justin R. McDade
  • Patent number: 11204391
    Abstract: A method and system for monitoring a charge capacity of a battery includes determining a predicted charge capacity and a first uncertainty parameter based upon the current, voltage, and temperature of the battery, wherein the predicted charge capacity is determined by executing a charge capacity degradation model. A measured charge capacity and an associated second uncertainty parameter of the battery are also determined, by executing a charge capacity update routine. A charge capacity estimate for the battery is determined based upon the predicted charge capacity and the measured charge capacity, and an updated uncertainty parameter for the charge capacity estimate is determined based upon the first and the second uncertainty parameters. An estimated covariance parameter, and a covariance ratio are determined based upon the updated uncertainty parameter and the estimated covariance parameter.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: December 21, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Charles W. Wampler, Justin R. McDade
  • Publication number: 20210215768
    Abstract: A method for battery capacity estimation is provided. The method includes monitoring a sensor, collecting a plurality of data points including a voltage-based state of charge value and an integrated current value, defining within the data points a first data set collected during a first time period and a second data set collected during a second time period, determining an integrated current error related to the second data set, comparing the integrated current error related to the second data set to a threshold integrated current error. When the error related to the second data set exceeds the threshold, the method further includes resetting the second data set based upon an integrated current value from the first time period. The method further includes combining the data sets to create a combined data set and determining a voltage slope capacity estimate as a change in integrated current versus voltage-based state of charge.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alfred Zhang, Justin Bunnell, Garrett M. Seeman, Jeffrey S. Piasecki, Charles W. Wampler, Brian J. Koch, Jing Gao, Jeffrey A. Bednar, Xiumei Guo, Justin R. McDade
  • Publication number: 20210080506
    Abstract: A method and system for monitoring a charge capacity of a battery includes determining a predicted charge capacity and a first uncertainty parameter based upon the current, voltage, and temperature of the battery, wherein the predicted charge capacity is determined by executing a charge capacity degradation model. A measured charge capacity and an associated second uncertainty parameter of the battery are also determined, by executing a charge capacity update routine. A charge capacity estimate for the battery is determined based upon the predicted charge capacity and the measured charge capacity, and an updated uncertainty parameter for the charge capacity estimate is determined based upon the first and the second uncertainty parameters. An estimated covariance parameter, and a covariance ratio are determined based upon the updated uncertainty parameter and the estimated covariance parameter.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles W. Wampler, Justin R. McDade