Patents by Inventor Justin S. Grayer

Justin S. Grayer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11874378
    Abstract: A coherent imaging system produces coherent flood illumination directed toward a remote object and local oscillator (LO) illumination derived based on a same master oscillator as the flood illumination. A Doppler sensor receives the LO illumination and a return of flood illumination reflected off the object. Doppler shift data from the Doppler sensor, corresponding to a longitudinal velocity of the object relative to the imaging system, is used to produce Doppler-shifted LO illumination received by a low bandwidth, large format focal plane array (FPA), together with the return illumination from the object. Interference between the Doppler-shifted LO illumination and the return illumination facilitates producing an image of the object with the low bandwidth FPA despite the longitudinal velocity. Pixel intensities from the FPA are integrated over a period approaching the maximum interference frequency. The Doppler sensor and FPA may concurrently process return for a high energy laser target spot.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: January 16, 2024
    Assignee: Raytheon Company
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, David N. Sitter, Jr., Gamze Erten
  • Publication number: 20210255325
    Abstract: A coherent imaging system produces coherent flood illumination directed toward a remote object and local oscillator (LO) illumination derived based on a same master oscillator as the flood illumination. A Doppler sensor receives the LO illumination and a return of flood illumination reflected off the object. Doppler shift data from the Doppler sensor, corresponding to a longitudinal velocity of the object relative to the imaging system, is used to produce Doppler-shifted LO illumination received by a low bandwidth, large format focal plane array (FPA), together with the return illumination from the object. Interference between the Doppler-shifted LO illumination and the return illumination facilitates producing an image of the object with the low bandwidth FPA despite the longitudinal velocity. Pixel intensities from the FPA are integrated over a period approaching the maximum interference frequency. The Doppler sensor and FPA may concurrently process return for a high energy laser target spot.
    Type: Application
    Filed: April 16, 2021
    Publication date: August 19, 2021
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, David N. Sitter, JR., Gamze Erten
  • Patent number: 10996336
    Abstract: A coherent imaging system produces coherent flood illumination directed toward a remote object and local oscillator (LO) illumination derived based on a same master oscillator as the flood illumination. A Doppler sensor receives the LO illumination and a return of flood illumination reflected off the object. Doppler shift data from the Doppler sensor, corresponding to a longitudinal velocity of the object relative to the imaging system, is used to produce Doppler-shifted LO illumination received by a low bandwidth, large format focal plane array (FPA), together with the return illumination from the object. Interference between the Doppler-shifted LO illumination and the return illumination facilitates producing an image of the object with the low bandwidth FPA despite the longitudinal velocity. Pixel intensities from the FPA are integrated over a period approaching the maximum interference frequency. The Doppler sensor and FPA may concurrently process return for a high energy laser target spot.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: May 4, 2021
    Assignee: Raytheon Company
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, David N. Sitter, Jr., Gamze Erten
  • Patent number: 10754038
    Abstract: An apparatus includes at least one processor configured to determine a wavefront phase profile of return illumination reflected from a remote object, where the wavefront phase profile is based on interference between Doppler-shifted local oscillator (LO) illumination and the return illumination. The at least one processor is also configured to calculate a wavefront error based on a comparison between (i) the determined wavefront phase profile of the return illumination and (ii) a desired wavefront phase profile of a high energy laser (HEL) beam. The at least one processor is further configured to control a deformable mirror to at least partially compensate the HEL beam for the calculated wavefront error.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: August 25, 2020
    Assignee: Raytheon Company
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, Gamze Erten, David N. Sitter, Jr.
  • Patent number: 10502951
    Abstract: An apparatus includes a wavefront sensor configured to receive coherent flood illumination that is reflected from a remote object and to estimate wavefront errors associated with the coherent flood illumination. The apparatus also includes a beam director optically coupled to the wavefront sensor and having a telescope and an auto-alignment system. The auto-alignment system is configured to adjust at least one first optical device in order to alter a line-of-sight of the wavefront sensor. The wavefront errors estimated by the wavefront sensor include a wavefront error resulting from the adjustment of the at least one first optical device. The beam director could further include at least one second optical device configured to correct for the wavefront errors. The at least one second optical device could include at least one deformable mirror.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: December 10, 2019
    Assignee: Raytheon Company
    Inventors: David N. Sitter, Jr., Joseph Marron, Maurice J. Halmos, Joseph J. Ichkhan, Justin S. Grayer, Gamze Erten
  • Patent number: 10401499
    Abstract: A laser beam projection system builds on a coherent imaging to project a tightly focused laser beam onto a remote object. Coherent flood illumination and local oscillator (LO) illumination are based on one master oscillator. The coherent flood illumination is directed toward a remote object, with a second laser beam directed onto an aimpoint on the same object. A Doppler sensor provides Doppler shift data used to produce Doppler-shifted LO illumination received by a focal plane array, together with the return flood illumination. Interference between the Doppler-shifted LO illumination and the return flood illumination facilitates imaging the object despite the velocity. The wavefront error of the flood illumined remote object image is computed and compared to the desired wavefront of the second laser beam at the aimpoint, with the difference applied to a deformable mirror to shape the second laser beam wavefront for obtaining a desired aimpoint intensity profile.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: September 3, 2019
    Assignee: Raytheon Company
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, Gamze Erten, David N. Sitter, Jr.
  • Publication number: 20190265362
    Abstract: An apparatus includes at least one processor configured to determine a wavefront phase profile of return illumination reflected from a remote object, where the wavefront phase profile is based on interference between Doppler-shifted local oscillator (LO) illumination and the return illumination. The at least one processor is also configured to calculate a wavefront error based on a comparison between (i) the determined wavefront phase profile of the return illumination and (ii) a desired wavefront phase profile of a high energy laser (HEL) beam. The at least one processor is further configured to control a deformable mirror to at least partially compensate the HEL beam for the calculated wavefront error.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 29, 2019
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, Gamze Erten, David N. Sitter, JR.
  • Publication number: 20180267299
    Abstract: An apparatus includes a wavefront sensor configured to receive coherent flood illumination that is reflected from a remote object and to estimate wavefront errors associated with the coherent flood illumination. The apparatus also includes a beam director optically coupled to the wavefront sensor and having a telescope and an auto-alignment system. The auto-alignment system is configured to adjust at least one first optical device in order to alter a line-of-sight of the wavefront sensor. The wavefront errors estimated by the wavefront sensor include a wavefront error resulting from the adjustment of the at least one first optical device. The beam director could further include at least one second optical device configured to correct for the wavefront errors. The at least one second optical device could include at least one deformable mirror.
    Type: Application
    Filed: June 7, 2016
    Publication date: September 20, 2018
    Inventors: David N. Sitter, JR., Joseph Marron, Maurice J. Halmos, Joseph J. lchkhan, Justin S. Grayer, Gamze Erten
  • Publication number: 20170269214
    Abstract: A laser beam projection system builds on a coherent imaging to project a tightly focused laser beam onto a remote object. Coherent flood illumination and local oscillator (LO) illumination are based on one master oscillator. The coherent flood illumination is directed toward a remote object, with a second laser beam directed onto an aimpoint on the same object. A Doppler sensor provides Doppler shift data used to produce Doppler-shifted LO illumination received by a focal plane array, together with the return flood illumination. Interference between the Doppler-shifted LO illumination and the return flood illumination facilitates imaging the object despite the velocity. The wavefront error of the flood illumined remote object image is computed and compared to the desired wavefront of the second laser beam at the aimpoint, with the difference applied to a deformable mirror to shape the second laser beam wavefront for obtaining a desired aimpoint intensity profile.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, Gamze Erten, David N. Sitter, JR.
  • Publication number: 20170192094
    Abstract: A coherent imaging system produces coherent flood illumination directed toward a remote object and local oscillator (LO) illumination derived based on a same master oscillator as the flood illumination. A Doppler sensor receives the LO illumination and a return of flood illumination reflected off the object. Doppler shift data from the Doppler sensor, corresponding to a longitudinal velocity of the object relative to the imaging system, is used to produce Doppler-shifted LO illumination received by a low bandwidth, large format focal plane array (FPA), together with the return illumination from the object. Interference between the Doppler-shifted LO illumination and the return illumination facilitates producing an image of the object with the low bandwidth FPA despite the longitudinal velocity. Pixel intensities from the FPA are integrated over a period approaching the maximum interference frequency. The Doppler sensor and FPA may concurrently process return for a high energy laser target spot.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Joseph Marron, Maurice J. Halmos, Justin S. Grayer, David N. Sitter, JR., Gamze Erten