Patents by Inventor Justin Scott Cisar

Justin Scott Cisar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8946188
    Abstract: Many pathogens, including Mycobacterium tuberculosis and Yersinia pestis, rely on an iron acquisition system based on siderophores, secreted iron-chelating compounds with extremely high Fe(III) affinity. The compounds of the invention are inhibitors of domain salicylation enzymes, which catalyze the salicylation of an aroyl carrier protein (ArCP) domain to form a salicyl-ArCP domain thioester intermediate via a two-step reaction. The compounds include the intermediate mimic 5?-O—[N-(salicyl)sulfamoyl]-adenosine (salicyl-AMS) and analogs thereof. These compounds are inhibitors of the salicylate activity of MbtA, YbtE, PchD, and other domain salicylation enzymes involved in the biosynthesis of siderophores. Therefore, these compounds may be used in the treatment of infection caused by microorganisms which rely on siderphore-based iron acquisition systems.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: February 3, 2015
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell Research Foundation, Inc.
    Inventors: Derek Shieh Tan, Luis E. N. Quadri, Jae-Sang Ryu, Justin Scott Cisar, Julian Alberto Ferreras, Xuequan Lu
  • Publication number: 20140024611
    Abstract: Many pathogens, including Mycobacterium tuberculosis and Yersinia pestis, rely on an iron acquisition system based on siderophores, secreted iron-chelating compounds with extremely high Fe(III) affinity. The compounds of the invention are inhibitors of domain salicylation enzymes, which catalyze the salicylation of an aroyl carrier protein (ArCP) domain to form a salicyl-ArCP domain thioester intermediate via a two-step reaction. The compounds include the intermediate mimic 5?-O—[N-(salicyl)sulfamoyl]-adenosine (salicyl-AMS) and analogs thereof. These compounds are inhibitors of the salicylate activity of MbtA, YbtE, PchD, and other domain salicylation enzymes involved in the biosynthesis of siderophores. Therefore, these compounds may be used in the treatment of infection caused by microorganisms which rely on siderphore-based iron acquisition systems.
    Type: Application
    Filed: May 20, 2013
    Publication date: January 23, 2014
    Inventors: Derek Shieh Tan, Luis E. N. Quadri, Jae-Sang Ryu, Justin Scott Cisar, Julian Alberto Ferreras, Xuequan Lu
  • Patent number: 8461128
    Abstract: Many pathogens, including Mycobacterium tuberculosis and Yersinia pestis, rely on an iron acquisition system based on siderophores, secreted iron-chelating compounds with extremely high Fe(III) affinity. The compounds of the invention are inhibitors of domain salicylation enzymes, which catalyze the salicylation of an aroyl carrier protein (ArCP) domain to form a salicyl-ArCP domain thioester intermediate via a two-step reaction. The compounds include the intermediate mimic 5?-O—[N-(salicyl)sulfamoyl]-adenosine (salicyl-AMS) and analogs thereof. These compounds are inhibitors of the salicylate activity of MbtA, YbtE, PchD, and other domain salicylation enzymes involved in the biosynthesis of siderophores. Therefore, these compounds may be used in the treatment of infection caused by microorganisms which rely on siderphore-based iron acquisition systems.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: June 11, 2013
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell Research Foundation, Inc.
    Inventors: Derek Shieh Tan, Luis E. N. Quadri, Jae-Sang Ryu, Justin Scott Cisar, Julian Alberto Ferreras, Xuequan Lu
  • Publication number: 20090170805
    Abstract: Many pathogens, including Mycobacterium tuberculosis and Yersinia pestis, rely on an iron acquisition system based on siderophores, secreted iron-chelating compounds with extremely high Fe(III) affinity. The compounds of the invention are inhibitors of domain salicylation enzymes, which catalyze the salicylation of an aroyl carrier protein (ArCP) domain to form a salicyl-ArCP domain thioester intermediate via a two-step reaction. The compounds include the intermediate mimic 5?-O—[N-(salicyl)sulfamoyl]-adenosine (salicyl-AMS) and analogs thereof. These compounds are inhibitors of the salicylate activity of MbtA, YbtE, PchD, and other domain salicylation enzymes involved in the biosynthesis of siderophores. Therefore, these compounds may be used in the treatment of infection caused by microorganisms which rely on siderphore-based iron acquisition systems.
    Type: Application
    Filed: April 14, 2006
    Publication date: July 2, 2009
    Inventors: Derek Shieh Tan, Luis E. N. Quadri, Jae-Sang Ryu, Justin Scott Cisar, Julian Alberto Ferreras, Xuequan Lu