Patents by Inventor Justin Sibert

Justin Sibert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170321211
    Abstract: The present invention relates to innovative means of generating sequence-linked DNA fragments and subsequent uses of such linked DNA fragments for de novo haplotype-resolved whole genome mapping and massively parallel sequencing. In various embodiments described herein, the methods of the invention relate to methods of generating paired-end nucleic acid fragment sharing common linker nucleic acid sequences using a nicking endonuclease, a T7 endonuclease, a restriction enzyme, or a transposase, methods of analyzing the nucleotides sequences from the linked-paired-end sequenced fragments, and methods of de novo whole genome mapping. Thus, the methods of this invention allow establishing sequence contiguity across the whole genome, and achieving high-quality, low-cost de novo assembly of complex genomes.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 9, 2017
    Applicant: DREXEL UNIVERSITY
    Inventors: Ming XIAO, Justin SIBERT
  • Patent number: 9758780
    Abstract: The present invention relates to innovative means of generating sequence-linked DNA fragments and subsequent uses of such linked DNA fragments for de novo haplotype-resolved whole genome mapping and massively parallel sequencing. In various embodiments described herein, the methods of the invention relate to methods of generating paired-end nucleic acid fragment sharing common linker nucleic acid sequences using a nicking endonuclease, a T7 endonuclease, a restriction enzyme, or a transposase, methods of analyzing the nucleotides sequences from the linked-paired-end sequenced fragments, and methods of de novo whole genome mapping. Thus, the methods of this invention allow establishing sequence contiguity across the whole genome, and achieving high-quality, low-cost de novo assembly of complex genomes.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: September 12, 2017
    Assignee: Drexel University
    Inventors: Ming Xiao, Justin Sibert
  • Publication number: 20150344873
    Abstract: The present invention relates to innovative means of generating sequence-linked DNA fragments and subsequent uses of such linked DNA fragments for de novo haplotype-resolved whole genome mapping and massively parallel sequencing. In various embodiments described herein, the methods of the invention relate to methods of generating paired-end nucleic acid fragment sharing common linker nucleic acid sequences using a nicking endonuclease, a T7 endonuclease, a restriction enzyme, or a transposase, methods of analyzing the nucleotides sequences from the linked-paired-end sequenced fragments, and methods of de novo whole genome mapping. Thus, the methods of this invention allow establishing sequence contiguity across the whole genome, and achieving high-quality, low-cost de novo assembly of complex genomes.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 3, 2015
    Applicant: DREXEL UNIVERSITY
    Inventors: Ming Xiao, Justin Sibert