Patents by Inventor Justin W. Klein

Justin W. Klein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240044638
    Abstract: To sense the shape of a multicore optical fiber sensor, light reflected in a center and two or more helixed outer cores of the optical fiber sensor is measured, and phases associated with strain in the center and helixed outer cores is tracked along the length of the fiber sensor. Further, a wobble signal indicative of a variation in the spin rate of the fiber sensor is determined. Based on the tracked phases and the wobble signal, the fiber shape is computed.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 8, 2024
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 11828586
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: November 28, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Publication number: 20220404144
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 22, 2022
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 11473902
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: October 18, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 11193751
    Abstract: Interferometric measurement signals are detected by a single optical interferometric interrogator for a length of a sensing light guide and an interferometric measurement data set corresponding to the interferometric measurement signals is generated. The interferometric measurement data set is transformed into a spectral domain to produce a transformed interferometric measurement data set. The transformed interferometric measurement data set is compared to a baseline interferometric data set to identify a time-varying signal corresponding to a time-varying disturbance. The baseline interferometric data set is representative of the sensing light guide not being subjected to the time-varying disturbance. A compensating signal is determined from the time-varying signal and used to compensate at least a portion of the interferometric measurement data set for the time-varying disturbance as part of producing a measurement of the parameter.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: December 7, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Alexander K. Sang, Dawn K. Gifford, Justin W. Klein
  • Publication number: 20210131796
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 6, 2021
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 10921117
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: February 16, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Publication number: 20200318951
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 10739129
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: August 11, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T Kreger
  • Publication number: 20200141719
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 7, 2020
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 10551173
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: February 4, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T Kreger
  • Patent number: 10545070
    Abstract: An optical frequency domain reflectometry (OFDR) measurement is produced from an OFDR apparatus that includes a tunable laser source coupled to a sensing interferometer and a monitor interferometer. The sensing interferometer is also coupled to a waveguide, e.g., an optical sensing fiber. Sensor interferometric data obtained by the OFDR measurement is processed in the spectral domain (e.g., frequency) with one or more parameters to compensate for the optical dispersion associated with the sensing interferometer data. A Fourier Transform of the dispersion-compensated sensing interferometric data in the spectral domain is performed to provide a dispersion-compensated OFDR measurement information in the temporal (e.g., time) domain.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: January 28, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Evan M. Lally, Justin W. Klein, Mark E. Froggatt, Emily E. H. Templeton
  • Publication number: 20190331479
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 10378885
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: August 13, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen Tod Kreger
  • Patent number: 10295380
    Abstract: An optical sensing fiber includes multiple reference reflectors spaced along a length of the fiber. Each of the multiple reference reflectors producing a reference scattering event having a known scattering profile including an elevated amplitude relative to scattering detected for neighboring segments of the optical fiber. Each of the segments is a length of contiguous fiber that is useable to initialize and perform a distributed Optical Frequency Domain Reflectometry (OFDR) sensing operation. An OFDR interrogation system is disclosed that measures a parameter using the optical sensing fiber.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 21, 2019
    Assignee: Luna Innovations Incorporated
    Inventors: Evan M. Lally, Justin W. Klein, Emily E. H. Templeton
  • Publication number: 20180356203
    Abstract: Interferometric measurement signals are detected by a single optical interferometric interrogator for a length of a sensing light guide and an interferometric measurement data set corresponding to the interferometric measurement signals is generated. The interferometric measurement data set is transformed into a spectral domain to produce a transformed interferometric measurement data set. The transformed interferometric measurement data set is compared to a baseline interferometric data set to identify a time-varying signal corresponding to a time-varying disturbance. The baseline interferometric data set is representative of the sensing light guide not being subjected to the time-varying disturbance. A compensating signal is determined from the time-varying signal and used to compensate at least a portion of the interferometric measurement data set for the time-varying disturbance as part of producing a measurement of the parameter.
    Type: Application
    Filed: July 25, 2018
    Publication date: December 13, 2018
    Inventors: Mark E. FROGGATT, Alexander K. SANG, Dawn K. GIFFORD, Justin W. KLEIN
  • Patent number: 10054420
    Abstract: An optical interrogation system, e.g., an OFDR-based system, measures local changes of index of refraction of a sensing light guide subjected to a time-varying disturbance. Interferometric measurement signals detected for a length of the sensing light guide are transformed into the spectral domain. A time varying signal is determined from the transformed interferometric measurement data set. A compensating signal is determined from the time varying signal which is used to compensate the interferometric measurement data set for the time-varying disturbance. The compensation technique may be applied along the length of the light guide.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 21, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Alexander K. Sang, Dawn K. Gifford, Justin W. Klein
  • Publication number: 20180113051
    Abstract: An optical frequency domain reflectometry (OFDR) measurement is produced from an OFDR apparatus that includes a tunable laser source coupled to a sensing interferometer and a monitor interferometer. The sensing interferometer is also coupled to a waveguide, e.g., an optical sensing fiber. Sensor interferometric data obtained by the OFDR measurement is processed in the spectral domain (e.g., frequency) with one or more parameters to compensate for the optical dispersion associated with the sensing interferometer data. A Fourier Transform of the dispersion-compensated sensing interferometric data in the spectral domain is performed to provide a dispersion-compensated OFDR measurement information in the temporal (e.g., time) domain.
    Type: Application
    Filed: December 20, 2017
    Publication date: April 26, 2018
    Inventors: Evan M. LALLY, Justin W. KLEIN, Mark E. FROGGATT, Emily E.H. TEMPLETON
  • Publication number: 20180058838
    Abstract: An optical interrogation system, e.g., an OFDR-based system, measures local changes of index of refraction of a sensing light guide subjected to a time-varying disturbance. Interferometric measurement signals detected for a length of the sensing light guide are transformed into the spectral domain. A time varying signal is determined from the transformed interferometric measurement data set. A compensating signal is determined from the time varying signal which is used to compensate the interferometric measurement data set for the time-varying disturbance. The compensation technique may be applied along the length of the light guide.
    Type: Application
    Filed: October 25, 2017
    Publication date: March 1, 2018
    Inventors: Mark E. FROGGATT, Alexander K. SANG, Dawn K. GIFFORD, Justin W. KLEIN
  • Patent number: 9885633
    Abstract: An optical frequency domain reflectometry (OFDR) measurement is produced from an OFDR apparatus that includes a tunable laser source coupled to a sensing interferometer and a monitor interferometer. The sensing interferometer is also coupled to a waveguide, e.g., an optical sensing fiber. Sensor interferometric data obtained by the OFDR measurement is processed in the spectral domain (e.g., frequency) with one or more parameters to compensate for the optical dispersion associated with the sensing interferometer data. A Fourier Transform of the dispersion-compensated sensing interferometric data in the spectral domain is performed to provide a dispersion-compensated OFDR measurement information in the temporal (e.g., time) domain.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: February 6, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Evan M. Lally, Justin W. Klein, Mark E. Froggatt, Emily E. H. Templeton