Patents by Inventor Jyh-Chern Chen

Jyh-Chern Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240060909
    Abstract: A cylindrical shell detection method includes generating a first and a second terahertz transmitting electromagnetic waves; detecting a plurality of first terahertz reflected electromagnetic waves reflected by the first terahertz transmitting electromagnetic wave incident in a plurality of inner interface layers of a cylindrical shell; detecting a plurality of second terahertz reflected electromagnetic waves reflected by the second terahertz transmitting electromagnetic wave incident in a plurality of outer interface layers of a cylindrical shell; measuring a plurality of first characteristic signals according to the first terahertz transmitting electromagnetic waves and the first terahertz reflected electromagnetic waves to determine a plurality of first characteristics of the plurality of inner interface layers; and measuring a plurality of second characteristic signals according to the second terahertz transmitting electromagnetic waves and the plurality of second terahertz reflected electromagnetic waves
    Type: Application
    Filed: November 14, 2022
    Publication date: February 22, 2024
    Applicant: Advanced ACEBIOTEK CO., LTD.
    Inventors: Jyh-Chern Chen, Yi-Ping Lin, Yung-Chou Hsu, Shen-Fu Hsu
  • Publication number: 20230059771
    Abstract: An optical measurement system is provided, which includes a light source device, a fiber module, an optical detection device and a processing circuit. The light source device is configured to generate light to illuminate a target tissue area and a reference tissue area of a human body. The fiber module is configured to direct and transmit the light to illuminate the target tissue area and the reference tissue area and receive response beams from the target tissue area and the reference tissue area. The optical detection device is configured to detect the response beams from the target tissue area to obtain the target spectrum signal and detect the response beams from the reference tissue area to obtain a reference spectrum signal. The processing circuit configured to calculate a health status parameter of the target tissue area according to the target spectrum signal and reference spectrum signal.
    Type: Application
    Filed: April 13, 2022
    Publication date: February 23, 2023
    Applicant: Advanced ACEBIOTEK CO., LTD.
    Inventors: Yi-Ping Lin, Jyh-Chern Chen, Shen-Fu Hsu
  • Patent number: 11467085
    Abstract: A solid dosage component detection method for a solid dosage component measurement device comprises generating a transmitting electromagnetic wave with a terahertz frequency and emitting to a solid dosage component; detecting a receiving electromagnetic wave with a terahertz frequency through the solid dosage component; comparing the transmitting electromagnetic wave incident on the solid dosage component with the receiving electromagnetic wave received from the solid dosage component to detect a plurality of signal characteristics differences between the transmitting and receiving electromagnetic waves; and discriminating polymorphism of a testing pharmaceutical in the solid dosage component, calculating a concentration of the testing pharmaceutical in the solid dosage component, and analyzing a coating layer thickness and a porosity of the solid dosage component based on the plurality of signal characteristics differences.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: October 11, 2022
    Assignee: Advanced ACEBIOTEK CO., LTD.
    Inventors: Jyh-Chern Chen, Yi-Ping Lin, Cho-Yen Tsai, Shen-Fu Hsu
  • Publication number: 20220107267
    Abstract: A solid dosage component detection method for a solid dosage component measurement device comprises generating a transmitting electromagnetic wave with a terahertz frequency and emitting to a solid dosage component; detecting a receiving electromagnetic wave with a terahertz frequency through the solid dosage component; comparing the transmitting electromagnetic wave incident on the solid dosage component with the receiving electromagnetic wave received from the solid dosage component to detect a plurality of signal characteristics differences between the transmitting and receiving electromagnetic waves; and discriminating polymorphism of a testing pharmaceutical in the solid dosage component, calculating a concentration of the testing pharmaceutical in the solid dosage component, and analyzing a coating layer thickness and a porosity of the solid dosage component based on the plurality of signal characteristics differences.
    Type: Application
    Filed: April 7, 2021
    Publication date: April 7, 2022
    Inventors: Jyh-Chern Chen, Yi-Ping Lin, Cho-Yen Tsai, Shen-Fu Hsu
  • Patent number: 10760955
    Abstract: A dual sensor module includes a substrate, a light source, a first encapsulant, a second encapsulant, a photodetector, and an electrode. The light source is disposed on the substrate. The first encapsulant is formed over the light source. The photodetector is disposed on the substrate. The second encapsulant is formed over the photodetector. The electrode is electrically connected to the substrate and is entirely located between the light source and the photodetector. A dual sensing accessory and a dual sensing device having the dual sensor module for detecting optical and electrical properties are also provided.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 10337983
    Abstract: The present disclosure generally relates to an optical measurement module, an optical measurement device, and a method for optical measurement. The optical measurement module provides optical architecture to measure the optical properties of an analyte. The optical measurement device comprising the optical measurement module is configured to measure the optical properties of an analyte. The method for the optical measurement provides steps for optical measurement.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: July 2, 2019
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Pei-Cheng Ho, Kuan-Jui Ho, Shuang-Chao Chung, Chih-Hsun Fan, Jyh-Chern Chen
  • Publication number: 20190137332
    Abstract: A dual sensor module includes a substrate, a light source, a first encapsulant, a second encapsulant, a photodetector, and an electrode. The light source is disposed on the substrate. The first encapsulant is formed over the light source. The photodetector is disposed on the substrate. The second encapsulant is formed over the photodetector. The electrode is electrically connected to the substrate and is entirely located between the light source and the photodetector. A dual sensing accessory and a dual sensing device having the dual sensor module for detecting optical and electrical properties are also provided.
    Type: Application
    Filed: August 1, 2018
    Publication date: May 9, 2019
    Inventors: CHANG-SHENG CHU, YU-TANG LI, YEH-WEN LEE, CHIH-HSUN FAN, LUNG-PIN CHUNG, JYH-CHERN CHEN, SHUANG-CHAO CHUNG
  • Patent number: 10194860
    Abstract: A virtual image display system adapted for venipuncture applications is provided. The virtual image display system includes at least one infrared light source, at least one image sensing module, and at least one virtual image display module. The at least one infrared light source is configured to emit at least one infrared light to a tissue having a vein. The at least one image sensing module is configured to receive the infrared light from the tissue so as to sense an image of the vein. The at least one virtual image display module is disposed in front of at least one eye of a user. The at least one virtual image display module includes an image display unit configured to show an image of the vein to the at least one eye of the user.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: February 5, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Chy-Lin Wang, Kuo-Tung Tiao, Tian-Yuan Chen, Lung-Pin Chung, Chun-Chuan Lin, Jyh-Chern Chen, Chi-Shen Chang, Ching-Chieh Yang
  • Patent number: 10132677
    Abstract: The present disclosure relates to an optical sensing accessory, an optical sensing device, and an optical sensing system. An optical sensing accessory, an optical sensing device, or an optical sensing system comprises a plurality of optical sensor modules and other electronic modules to achieve multi-site measurement. An optical sensor module comprises a light source, a photodetector, and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. An optical sensing accessory, an optical sensing device, or an optical sensing system and comprise the optical sensor module and other electronic modules to have further applications.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: November 20, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 10117612
    Abstract: A detecting device for detecting physiological parameters of a biological tissue includes a light source, at least one light detector, a package, an outer cover, and an optical microstructure. The light source is configured to emit a first beam and a second beam. The package is disposed on the light source and the light detector and is located on the transmission paths of the first and second beams. The outer cover covers the light source, the light detector and the package, and includes a top surface. The optical microstructure is located in the transmission paths of the first and second beams, and is arranged in parallel with the top surface of the outer cover. The optical microstructure includes at least one set of circles of different radii, and is made of a diffractive optical element, a holographic optical element, a computer-generated holographic element, a fresnel lens or a lens grating.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 6, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Shuang-Chao Chung, Chih-Hsun Fan, Jyh-Chern Chen
  • Patent number: 10103764
    Abstract: A wearable device for information delivery may comprise a physiological sensor, a microprocessor, a display and a wearable housing. The wearable device may effectively receive a signal, convert the signal into information and renders a layout on a display. A method for information delivery may comprise signal reception step, signal transformation step and information visualization step. The method may be extensively applied in a wearable device or a device comprising at least a physiological sensor, a microprocessor and a display.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 16, 2018
    Assignee: TAIWAN BIOPHOTONIC CORPORATION
    Inventors: Jyh-Chern Chen, Yu-Tang Li, Ting-Ju Chen, Wei-Ping Huang, Chih-Hsun Fan
  • Patent number: 10088356
    Abstract: The present disclosure relates to an optical sensor module, an optical sensing accessory, and an optical sensing device. An optical sensor module comprises a light source, a photodetector, an electrode and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. The electrode is configured to detect an external circuit formed by the contact with an object surface. An optical sensing accessory and an optical sensing device comprise the optical sensor module and other electronic modules to have further applications.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: October 2, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 10073269
    Abstract: A virtual image display apparatus, adapted for medical surgical applications, with which a surgical device is operated is provided. The virtual image display apparatus includes at least one virtual image display module which is disposed in front of at least one eye of a user. The virtual image display module includes an image display unit and a beam splitting unit. The image display unit provides an image beam, wherein the image beam includes at least one type of surgical information. The beam splitting unit is disposed on the transmission path of the image beam and an object beam from an environment object. The beam splitting unit causes at least part of the object beam to be transmitted to the eye, and causes at least part of the image beam to be transmitted to the eye to display a virtual image.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: September 11, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Chy-Lin Wang, Kuo-Tung Tiao, Tian-Yuan Chen, Lung-Pin Chung, Chun-Chuan Lin, Jyh-Chern Chen, Chi-Shen Chang, Ching-Chieh Yang
  • Patent number: 10048197
    Abstract: An optical measurement device includes a light source, first and second beam splitters, and first and second photodetectors. The light source that generates an emitted light beam. The first beam splitter that divides the emitted light beam into a compensation light beam and a measurement light beam. The first beam splitter directs the measurement light beam to a target. The second beam splitter that redirects the compensation light beam from the first beam splitter. A part of wavelength dependent characteristics of the first beam splitter and the second beam splitter are the same. The first photodetector that detects the compensation light beam redirected from the second beam splitter. The second photodetector that detects the measurement light beam reflected by the target and redirected by the first beam splitter. Another optical measurement device and an optical measurement method are also provided.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 14, 2018
    Assignee: TAIWAN BIOPHOTONIC CORPORATION
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Kuan-Jui Ho, Pei-Cheng Ho, Shuang-Chao Chung, Chih-Hsun Fan, Jyh-Chern Chen
  • Publication number: 20180132771
    Abstract: A detecting device for detecting physiological parameters of a biological tissue includes a light source, at least one light detector, a package, an outer cover, and an optical microstructure. The light source is configured to emit a first beam and a second beam. The package is disposed on the light source and the light detector and is located on the transmission paths of the first and second beams. The outer cover covers the light source, the light detector and the package, and includes a top surface. The optical microstructure is located in the transmission paths of the first and second beams, and is arranged in parallel with the top surface of the outer cover. The optical microstructure includes at least one set of circles of different radii, and is made of a diffractive optical element, a holographic optical element, a computer-generated holographic element, a fresnel lens or a lens grating.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: YU-TANG LI, CHANG-SHENG CHU, SHUANG-CHAO CHUNG, CHIH-HSUN FAN, JYH-CHERN CHEN
  • Patent number: 9883824
    Abstract: A detecting device includes at least one detecting module. In the detecting module, a light source unit is configured to emit a first beam and a second beam. The wavelength of the first beam is different from that of the second beam. A packaging unit is disposed on the light source unit and a light detecting unit and on transmission paths of the first beam and the second beam from the light source unit. An optical microstructure unit is disposed on the transmission paths of the first beam and the second beam. The first beam and the second beam emitted from the light source unit pass through the packaging unit to pass the optical microstructure unit to be transmitted to a biological tissue, and then pass through the optical microstructure unit to pass the packaging unit to be transmitted to the light detecting unit in sequence.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: February 6, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Kuo-Tung Tiao, Jyh-Chern Chen, Yu-Tang Li, Chang-Sheng Chu, Shuang-Chao Chung, Chih-Hsun Fan, Ming-Chia Li
  • Patent number: 9833175
    Abstract: An apparatus for non-invasive blood glucose monitoring includes a light source for generating at least one ray of light, a beam splitter with a focusing function leads the light into an eyeball and focuses on the eyeball, a set of photo detectors for measuring optical angular information and absorption energy information of the light reflected from the eyeball and transmitted through the first beam splitter to the set of photo detectors, and a processing unit. The processing unit receives and processes the Optical angular information and the absorption energy information to obtain an Optical angular difference and an absorption energy difference between the light emitted from the light source and the light transmitted to the set of photo detectors, and analyzes the Optical angular difference and the absorption energy difference to obtain a glucose information, and since the glucose information has a corresponding relationship with a blood glucose information, the blood glucose information may be read.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: December 5, 2017
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Chih-Hsun Fan, Shuang-Chao Chung, Ming-Chia Li, Jyh-Chern Chen, Kuo-Tung Tiao
  • Patent number: 9752925
    Abstract: The present disclosure relates to an optical sensor module, an optical sensing accessory, and an optical sensing device. An optical sensor module comprises a light source, a photodetector, and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. An optical sensing accessory and an optical sensing device comprise the optical sensor module and other electronic modules to have further applications.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: September 5, 2017
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 9743864
    Abstract: A method for non-invasive blood glucose monitoring includes the following steps. At least one ray of light is emitted from at least one light source. The light emitted from the light source is leaded into an eyeball and focused on the eyeball through a first beam splitter. The reflected light reflected from the eyeball is transmitted through the first beam splitter to a set of photo detectors. Optical angular information and absorption energy information of the reflected light transmitted to the set of photo detectors are measured. Optical angular difference and absorption energy difference resulting from the light emitted from the light source and the reflected light transmitted to the set of photo detectors are obtained. Glucose information is obtained by analyzing the optical angular difference and the absorption energy difference, and since glucose information has a corresponding relationship with blood glucose information, blood glucose information may be read.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: August 29, 2017
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Chih-Hsun Fan, Shuang-Chao Chung, Ming-Chia Li, Jyh-Chern Chen, Kuo-Tung Tiao
  • Patent number: 9724022
    Abstract: An apparatus for non-invasive glucose monitoring includes a light source for emitting at least one ray of light; a first beam splitter, a set of photo detectors for measuring optical rotatory distribution (ORD) information and absorption energy information; a reference component receiving the light from the first beam splitter, and the light reflected by the reference component being transmitted to the set of photo detectors by the first beam splitter, wherein the light emitted from the light source is transmitted to the set of photo detectors by the first beam splitter and the eyeball to form a first optical path, the light emitted from the light source is transmitted to the set of photo detectors by the first beam splitter and the reference component to form a second optical path; and a processing unit receiving and processing the ORD information and the absorption energy information to obtain a glucose information.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: August 8, 2017
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Chih-Hsun Fan, Shuang-Chao Chung, Ming-Chia Li, Jyh-Chern Chen, Kuo-Tung Tiao