Patents by Inventor K. Bruce Jacobson

K. Bruce Jacobson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020064791
    Abstract: This invention provides a means of detecting unlabeled DNA or RNA following hybridization to an immobilized, labeled DNA probe. The immobilized DNA oligomers (probes) form a hairpin structure containing a unique restriction site that persists only when hybridization to the internal target-hybridization sequence has not occurred. Restriction enzyme digestion of unhybridized, labeled DNA probes at or above room temperature detaches the label from the surface and the label is washed away. The hairpin structure is disrupted when hybridization of the internal target-hybridization sequence occurs, removing the restriction site and preventing cleavage. In this case, the labels on target-hybridized probes remain bound to the substrate and are detected. In its preferred embodiment, a bioluminescent label is located on one end of the probe and a surface attachment moiety is on the other.
    Type: Application
    Filed: September 19, 2001
    Publication date: May 30, 2002
    Inventors: Tom J. Whitaker, Wanda L. B. White, K. Bruce Jacobson, Kenneth F. Willey, Bruce M. Applegate
  • Patent number: 6289717
    Abstract: A sensor apparatus is provided using a microcantilevered spring element having a coating of a detector molecule such as an antibody or antigen. A sample containing a target molecule or substrate is provided to the coating. The spring element bends in response to the stress induced by the binding which occurs between the detector and target molecules. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 &mgr;m long, approximately 1 to 50 &mgr;m wide, and approximately 0.3 to 3.0 &mgr;m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: September 18, 2001
    Assignee: U. T. Battelle, LLC
    Inventors: Thomas G. Thundat, K. Bruce Jacobson, Mitchel J. Doktycz, Stephen J. Kennel, Robert J. Warmack
  • Patent number: 5821060
    Abstract: A process for deoxyribonucleic acid (DNA) sequencing, mapping, and diagnostics which utilizes the differences between the chemical composition of DNA and that of peptide nucleic acids (PNAs) to provide DNA sequencing, mapping, or diagnostics using natural DNA fragments, rather than using radioisotopes, stable isotopes or fluorescent substances to label the DNAs. The process includes the steps of hybridizing PNA segments to complementary DNA segments which are fixed to a hybridization surface, or hybridizing DNA segments to complementary PNA segments which are fixed to a hybridization surface, and using mass spectrometric or non-mass spectrometric techniques to analyze the extent of hybridization at each potential hybridization site.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: October 13, 1998
    Assignee: Atom Sciences, Inc.
    Inventors: Heinrich F. Arlinghaus, K. Bruce Jacobson
  • Patent number: 5780232
    Abstract: A DNA sequencing, mapping, and diagnostic process which includes the steps of labeling nucleotide segments or peptide nucleic acids (PNAs) with one or more atoms of specific stable or long-lived radioactive isotopes of a selected element that do not normally occur in DNAs, ODNs or PNAs such that the nucleotide segment or PNA has specific stable or long-lived radioactive isotope of a specified selected element at a terminal or an interior position; hybridizing the labeled nucleotide segment or PNA to complementary nucleic acid segments or PNAs which are fixed on a hybridization surface; and, using mass spectrometric techniques, including RIS, to analyze the presence and position of the labeled hybridized nucleotide segments or PNAs which are bound to the fixed nucleotide segments or PNAs.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: July 14, 1998
    Assignee: Atom Sciences, Inc.
    Inventors: Heinrich F. Arlinghaus, K. Bruce Jacobson
  • Patent number: 5002868
    Abstract: A DNA sequencing process using specific stable isotopes associated with specific terminators for labels. The process includes a step of incorporating a stable isotope in at least one of the deoxynucleoside triphosphates and/or the dideoxynucleoside triphosphates such that a terminated strand has included within it or at the end a stable isotope such as an isotope of sulphur. Replicated strands are then separated by performing gel electrophoresis thereon. The location of the DNA strand with the stable isotope assigned to a terminator is analyzed preferably by resonance ionization spectroscopy. The stable isotopes can be chosen such that specific labels are assigned to at least one, and preferably to each base, in the dideoxynucleoside triphosphates. In the preferred embodiment, each of the bases (A, T, G and C) are associated with a specific stable isotopic label, and can be analyzed in a single track which enhances the accuracy of the sequencing process.
    Type: Grant
    Filed: July 20, 1988
    Date of Patent: March 26, 1991
    Assignee: Atom Sciences, Inc.
    Inventors: K. Bruce Jacobson, Harold W. Schmitt