Patents by Inventor K. J. Lee

K. J. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10565073
    Abstract: A peak power control (PPC) system/method providing a uninterruptable power supply (UPS) to one or more protected load devices (PLD) supplied by power supply units (PSU) serviced by a primary power source (PPS) and a secondary power source (SPS) is disclosed. The PPS is configured to provide only a portion of peak power demand (PPD) required by the PSU to support the PLD power demand. During periods where power supplied by the PPS is insufficient to support the PLD power demand, the SPS augments the power supplied to the PSU to meet the PLD power demand. During periods where power supplied by the PPS is sufficient to meet the PLD power demand, the SPS is recharged by any excess power available from the PPS. Power provisioning controls (PPC) generate state control information (SCI) instructing the PLD to modulate computing clock speeds and/or prioritize PLD computing tasks in real-time.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: February 18, 2020
    Assignee: LITE-ON, INC.
    Inventor: Victor K. J. Lee
  • Patent number: 9965365
    Abstract: A power supply failover system/method providing uninterruptable power to protected load devices (PLD) is disclosed. The system includes a failover switch controller (FSC) with inputs from an AC I/V monitor (AIV), AC cycle counter (ACC), failover switch timer (FST), and overcurrent protection timer (OPT). The FSC utilizes these inputs to control failsafe switching of a bypass phase switch (BPS) and AC phase switch (ACS) to the PLD when power from the APS is determined to be good by the AIV. When power from the APS is determined to be compromised by the AIV, the FPS disables the ACS/BPS and enables a DC switch (DCS) and battery isolation switch (BIS) to connect a DC source to the PLD after a time period determined by the FST. APS/DCS overcurrent protection is limited by OPT intervals allowing a smooth transition between the APS to DCS during power failover/failback.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: May 8, 2018
    Assignee: LITE-ON, INC.
    Inventors: Victor K. J. Lee, Yung Hsiang Liu, Wei Kang Liang, Yu Kai Wang, Chih Hung Chiang
  • Publication number: 20180060197
    Abstract: A peak power control (PPC) system/method providing a uninterruptable power supply (UPS) to one or more protected load devices (PLD) supplied by power supply units (PSU) serviced by a primary power source (PPS) and a secondary power source (SPS) is disclosed. The PPS is configured to provide only a portion of peak power demand (PPD) required by the PSU to support the PLD power demand. During periods where power supplied by the PPS is insufficient to support the PLD power demand, the SPS augments the power supplied to the PSU to meet the PLD power demand. During periods where power supplied by the PPS is sufficient to meet the PLD power demand, the SPS is recharged by any excess power available from the PPS. Power provisioning controls (PPC) generate state control information (SCI) instructing the PLD to modulate computing clock speeds and/or prioritize PLD computing tasks in real-time.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Applicant: LITE-ON, Inc.
    Inventor: Victor K. J. Lee
  • Patent number: 9537351
    Abstract: A dual input power supply system/method providing uninterruptable power to a protected load device (PLD) is disclosed. The system includes hybrid switch devices (HSD) comprising semiconductor and relay/contactors that minimize the OPERATE/RELEASE times associated with switchover from a primary power source (PPS) to a secondary power source (SPS). An operate/release controller (ORC) monitors the condition of power provided by the PPS and SPS and determines the optimal transfer time to activate the HSD and switch between the PPS and SPS based on the PLD configuration. Use of the HSD in conjunction with the ORC permits a wide variety of series permutated AC/DC primary (PPS) and secondary (SPS) power sources, EMI snubbers (EMS), bridge rectifier diodes (BRD), AC-DC converters (ADC), and DC-DC converters (DDC) to service the PLD, while simultaneously reducing storage capacitors normally required to cover the OPERATE/RELEASE times associated with traditional PPS/SPS switchover/failover delays.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: January 3, 2017
    Assignee: LITE-ON, INC.
    Inventors: Victor K. J. Lee, Yung Hsiang Liu, Wei Ru Chen, Chen Yu Wang, Chao Han Cheng
  • Patent number: 9537341
    Abstract: A power supply output configuration system/method providing a digitally controlled uninterruptable power supply (UPS) to protected load devices (PLD) configured as power supply units (PSU) serviced by one or more power supply sources (PSS) is disclosed. The system generally includes a number of power supply sources (PSS) that are monitored by power condition sensing (PCS) circuitry that determines individual power source states within the PSS. This physical state information is used by a digitally controlled switching network (DSN) that reconfigures the electrical connections between the PSS and the individual PLD elements to properly route power from the PSS to the PLD in the event of individual PSS failures. The DSN receives phase/voltage state information from the PSS to ensure that current between the PSS and PLD is transferred in a synchronized manner and that PSS resources are properly protected during the switching transition.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: January 3, 2017
    Assignee: LITE-ON, INC.
    Inventor: Victor K. J. Lee
  • Patent number: 9509158
    Abstract: A power supply configuration system/method providing a digitally controlled uninterruptable power supply (UPS) to protected load devices (PLD) configured as power supply units (PSU) serviced by one or more power supply sources (PSS) is disclosed. The system generally includes a number of power supply sources (PSS) that are monitored by power condition sensing (PCS) circuitry that determines individual power source states within the PSS. This physical state information is used by a digitally controlled switching network (DSN) that reconfigures the electrical connections between the PSS and the individual PLD elements to properly route power from the PSS to the PLD in the event of individual PSS failures. The DSN receives phase/voltage state information from the PSS to ensure that current between the PSS and PLD is transferred in a synchronized manner and that PSS resources are properly protected during the switching transition.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: November 29, 2016
    Assignee: LITE-ON, INC.
    Inventor: Victor K. J. Lee
  • Patent number: 9444280
    Abstract: An uninterruptable power supply (UPS) system/method providing power line conditioning and power factor correction (PFC) that incorporates centralized battery backup energy storage architecture is disclosed. The system generally comprises an AC-DC power supply with active PFC (power factor correction) function, a battery transfer switch, an isolated battery charger placed between the utility power source and battery strings, battery strings connecting the battery charger and the battery transfer switch, EMI/Lightning circuitry that provides lighting/line surge protection as well noise suppression functions, and a controller monitoring the quality of the utility power source. Uninterruptable power for data centers is achieved in this context via use of the battery strings, battery transfer switch, battery charger, and controller system configuration. Disclosed methods associated with this system generally permit the UPS to operate in a distributed fashion in support of computing systems within data centers.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: September 13, 2016
    Assignee: LITE-ON, INC.
    Inventor: Victor K. J. Lee
  • Publication number: 20160233720
    Abstract: A dual input power supply system/method providing uninterruptable power to a protected load device (PLD) is disclosed. The system includes hybrid switch devices (HSD) comprising semiconductor and relay/contactors that minimize the OPERATE/RELEASE times associated with switchover from a primary power source (PPS) to a secondary power source (SPS). An operate/release controller (ORC) monitors the condition of power provided by the PPS and SPS and determines the optimal transfer time to activate the HSD and switch between the PPS and SPS based on the PLD configuration. Use of the HSD in conjunction with the ORC permits a wide variety of series permutated AC/DC primary (PPS) and secondary (SPS) power sources, EMI snubbers (EMS), bridge rectifier diodes (BRD), AC-DC converters (ADC), and DC-DC converters (DDC) to service the PLD, while simultaneously reducing storage capacitors normally required to cover the OPERATE/RELEASE times associated with traditional PPS/SPS switchover/failover delays.
    Type: Application
    Filed: October 30, 2015
    Publication date: August 11, 2016
    Applicant: Lite-On, Inc.
    Inventors: Victor K. J. LEE, Yung Hsiang LIU, Wei Ru CHEN, Chen Yu WANG, Chao Han CHENG
  • Publication number: 20160154716
    Abstract: A power supply failover system/method providing uninterruptable power to protected load devices (PLD) is disclosed. The system includes a failover switch controller (FSC) with inputs from an AC I/V monitor (AIV), AC cycle counter (ACC), failover switch timer (FST), and overcurrent protection timer (OPT). The FSC utilizes these inputs to control failsafe switching of a bypass phase switch (BPS) and AC phase switch (ACS) to the PLD when power from the APS is determined to be good by the AIV. When power from the APS is determined to be compromised by the AIV, the FPS disables the ACS/BPS and enables a DC switch (DCS) and battery isolation switch (BIS) to connect a DC source to the PLD after a time period determined by the FST. APS/DCS overcurrent protection is limited by OPT intervals allowing a smooth transition between the APS to DCS during power failover/failback.
    Type: Application
    Filed: January 22, 2016
    Publication date: June 2, 2016
    Applicant: Lite-On, Inc.
    Inventors: Victor K. J. LEE, Yung Hsiang LIU, Wei Kang LIANG, Yu Kai WANG, Chih Hung CHIANG
  • Publication number: 20160049822
    Abstract: A power supply output configuration system/method providing a digitally controlled uninterruptable power supply (UPS) to protected load devices (PLD) configured as power supply units (PSU) serviced by one or more power supply sources (PSS) is disclosed. The system generally includes a number of power supply sources (PSS) that are monitored by power condition sensing (PCS) circuitry that determines individual power source states within the PSS. This physical state information is used by a digitally controlled switching network (DSN) that reconfigures the electrical connections between the PSS and the individual PLD elements to properly route power from the PSS to the PLD in the event of individual PSS failures. The DSN receives phase/voltage state information from the PSS to ensure that current between the PSS and PLD is transferred in a synchronized manner and that PSS resources are properly protected during the switching transition.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventor: Victor K. J. LEE
  • Publication number: 20150380968
    Abstract: An uninterruptable power supply (UPS) system/method providing power line conditioning and power factor correction (PFC) that incorporates centralized battery backup energy storage architecture is disclosed. The system generally comprises an AC-DC power supply with active PFC (power factor correction) function, a battery transfer switch, an isolated battery charger placed between the utility power source and battery strings, battery strings connecting the battery charger and the battery transfer switch, EMI/Lightning circuitry that provides lighting/line surge protection as well noise suppression functions, and a controller monitoring the quality of the utility power source. Uninterruptable power for data centers is achieved in this context via use of the battery strings, battery transfer switch, battery charger, and controller system configuration. Disclosed methods associated with this system generally permit the UPS to operate in a distributed fashion in support of computing systems within data centers.
    Type: Application
    Filed: September 2, 2015
    Publication date: December 31, 2015
    Applicant: LITE-ON, INC.
    Inventor: Victor K.J. Lee
  • Publication number: 20150188349
    Abstract: A power supply configuration system/method providing a digitally controlled uninterruptable power supply (UPS) to protected load devices (PLD) configured as power supply units (PSU) serviced by one or more power supply sources (PSS) is disclosed. The system generally includes a number of power supply sources (PSS) that are monitored by power condition sensing (PCS) circuitry that determines individual power source states within the PSS. This physical state information is used by a digitally controlled switching network (DSN) that reconfigures the electrical connections between the PSS and the individual PLD elements to properly route power from the PSS to the PLD in the event of individual PSS failures. The DSN receives phase/voltage state information from the PSS to ensure that current between the PSS and PLD is transferred in a synchronized manner and that PSS resources are properly protected during the switching transition.
    Type: Application
    Filed: December 10, 2014
    Publication date: July 2, 2015
    Inventor: Victor K.J. Lee
  • Patent number: 9047075
    Abstract: An uninterruptable power supply (UPS) system/method providing power line conditioning and power factor correction (PFC) that incorporates centralized battery backup energy storage architecture is disclosed. The system generally comprises an AC-DC power supply with active PFC (power factor correction) function, a battery transfer switch, an isolated battery charger placed between the utility power source and battery strings, battery strings connecting the battery charger and the battery transfer switch, EMI/Lightning circuitry that provides lighting/line surge protection as well noise suppression functions, and a controller monitoring the quality of the utility power source. Uninterruptable power for data centers is achieved in this context via use of the battery strings, battery transfer switch, battery charger, and controller system configuration. Disclosed methods associated with this system generally permit the UPS to operate in a distributed fashion in support of computing systems within data centers.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: June 2, 2015
    Inventor: Victor K. J. Lee
  • Patent number: 9047076
    Abstract: An uninterruptable power supply (UPS) system/method providing power line conditioning and power factor correction (PFC) that incorporates centralized battery backup energy storage architecture is disclosed. The system generally comprises an AC-DC power supply with active PFC (power factor correction) function, a battery transfer switch, an isolated battery charger placed between the utility power source and battery strings, battery strings connecting the battery charger and the battery transfer switch, EMI/Lightning circuitry that provides lighting/line surge protection as well noise suppression functions, and a controller monitoring the quality of the utility power source. Uninterruptable power for data centers is achieved in this context via use of the battery strings, battery transfer switch, battery charger, and controller system configuration. Disclosed methods associated with this system generally permit the UPS to operate in a distributed fashion in support of computing systems within data centers.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: June 2, 2015
    Inventor: Victor K. J. Lee
  • Patent number: 5641282
    Abstract: A high intensity and high efficiency radiant gas burner (10) has a housing (8), a gas inlet (11) for receiving a combustible gas, a gas injection plate (13) for distributing the gas, a gas distribution chamber (16) for permitting the gas to expand, a porous ceramic layer (17) for receiving the gas from the gas distribution chamber (16), and a plurality of elongated flame support rods (23) situated over and spaced from a burner surface (17b) of the porous ceramic layer (17). When the gas is ignited, the flame transfers energy via convective heat transfer to the rods (23). When the rods (23) heat up, they radiate energy back towards the burner surface (17b) and also outwardly away from the burner surface (17b) so that radiation intensity and efficiency are optimized. A rod adjustment mechanism (84) may be disposed on the burner (10) for moving the rods (23) to thereby optimize radiation intensity and efficiency.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: June 24, 1997
    Assignee: Gas Research Institute
    Inventors: K. J. Lee, Joe K. Cochran, Jr., Tzyy-Jiuan Hwang