Patents by Inventor K. Ranji Vaidyanathan

K. Ranji Vaidyanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8158045
    Abstract: A method for manufacturing a composite material utilizes a tooling material having a desired shape. The surface of the tooling material is coated with a composite film that includes a conductive filler material. A composite composition is introduced into contact with the surface of the tooling material to form a desired shape. The composite composition is processed to produce the composite material, and the composite material has a conductive composite surface layer that includes the conductive filler material.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: April 17, 2012
    Assignee: BAE Systems Unmanned Aircraft Programs Inc.
    Inventors: K. Ranji Vaidyanathan, Jeffrey Campbell
  • Patent number: 7704594
    Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: April 27, 2010
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
  • Publication number: 20090075088
    Abstract: A method for manufacturing a composite material utilizes a tooling material having a desired shape. The surface of the tooling material is coated with a composite film that includes a conductive filler material. A composite composition is introduced into contact with the surface of the tooling material to form a desired shape. The composite composition is processed to produce the composite material, and the composite material has a conductive composite surface layer that includes the conductive filler material.
    Type: Application
    Filed: July 21, 2008
    Publication date: March 19, 2009
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Jeffrey Campbell
  • Publication number: 20080237922
    Abstract: Methods and compositions for fabricating composite parts including at least one structural material and at least one protective material that are integrally bonded without the use of secondary bonding operations. One or more of the materials forming the layers of the composite parts may be a ceramic composition with or without porosity and one or more of the materials may be a polymer composition. Methods including co-injection processes also are provided for fabricating multi-layered structures in which each layer serves a desired function while still being integrated into the overall structure.
    Type: Application
    Filed: July 15, 2005
    Publication date: October 2, 2008
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Catherine Green, John W. Gillespie, Shridhar Yarlagadda, Gregory J. Artz
  • Patent number: 7387757
    Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 17, 2008
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Patent number: 7360309
    Abstract: A heat exchanger device includes an extruded body that includes one or more layers of channels for coolant flow therethrough, the channels generally having inner diameters of between about 50 microns to about 2000 microns. The device is formed of a material having a high thermal conductivity to facilitate transfer of heat from the heating components present in the subject cooling application to the coolant passing through the heat exchanger and to be compatible with materials of the heating components. The device material is selected from the group consisting of ceramic oxides, ceramic carbides, ceramic nitrides, ceramic borides, ceramic silicides, metals, and intermetallics, and combinations thereof. The heat exchanger device is formed from an extruded filament that is arranged to give the desired channel configuration. The filament includes a central, removable material and an outer material that forms the channel walls upon removal of the central material.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: April 22, 2008
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Alfonso Ortega, Marlene Platero, Prathib Skandakumaran, Chad Bower
  • Patent number: 6935594
    Abstract: Methods and compositions for fabricating composite parts including at least one structural material and at least one protective material that are integrally bonded without the use of secondary bonding operations. One or more of the materials forming the layers of the composite parts may be a ceramic composition with or without porosity and one or more of the materials may be a polymer composition. Methods including co-injection processes also are provided for fabricating multi-layered structures in which each layer serves a desired function while still being integrated into the overall structure.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: August 30, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Catherine Green, John W. Gillespie, Shridhar Yarlagadda, Gregory J. Artz
  • Patent number: 6899777
    Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber rei
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: May 31, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Joseph Walish, Mark Fox, John W. Gillespie, Jr., Shridhar Yarlagadda, Michael R. Effinger, Anthony C. Mulligan, Mark J. Rigali
  • Patent number: 6852272
    Abstract: The present invention relates to the fabrication of low cost, in situ, porous metallic, ceramic and cermet foam structures having improved mechanical properties such as energy absorption and specific stiffness. Methods of fabricating the structures from compositions including ceramic and/or metallic powders are provided. The flowable compositions also include an immiscible phase that results in pores within the final structure. Furthermore, the structures may be shaped to have external porosity, such as with mesh-like structures.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: February 8, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Gregory Artz, K. Ranji Vaidyanathan, Michael L. Fulcher, Mark J. Rigali, John L. Lombardi, Joseph Walish, Ronald A. Cipriani
  • Patent number: 6828373
    Abstract: The present invention relates to a low density, water-soluble coring and tooling material used for the fabrication of composite parts. One aspect of the present invention relates to a lightweight, strong composite coring material that can be easily shaped and removed from cured composite parts. Another aspect of the present invention relates to a lightweight, strong composite tooling material that is easily tailored to provide a specific coefficient of thermal expansion and thermal conductivity, thus providing a tooling material that can be matched to the composite structure and material being fabricated.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: December 7, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Gregory J. Artz, John L. Lombardi, K. Ranji Vaidyanathan, Joseph Walish
  • Publication number: 20040238999
    Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
    Type: Application
    Filed: June 29, 2004
    Publication date: December 2, 2004
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Patent number: 6805946
    Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: October 19, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
  • Patent number: 6797220
    Abstract: Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: September 28, 2004
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Publication number: 20030180171
    Abstract: The present invention relates to the fabrication of low cost, in situ, porous metallic, ceramic and cermet foam structures having improved mechanical properties such as energy absorption and specific stiffness. Methods of fabricating the structures from compositions including ceramic and/or metallic powders are provided. The flowable compositions also include an immiscible phase that results in pores within the final structure. Furthermore, the structures may be shaped to have external porosity, such as with mesh-like structures.
    Type: Application
    Filed: January 27, 2003
    Publication date: September 25, 2003
    Applicant: Advanced Ceramics Research, Inc.
    Inventors: Gregory Artz, K. Ranji Vaidyanathan, Michael L. Fulcher, Mark J. Rigali, John L. Lombardi, Joseph Walish, Ronald A. Cipriani
  • Publication number: 20030044593
    Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber rei
    Type: Application
    Filed: January 2, 2002
    Publication date: March 6, 2003
    Inventors: K. Ranji Vaidyanathan, Joseph Walish, Mark Fox, John W. Gillespie, Shridhar Yarlagadda, Michael R. Effinger, Anthony C. Mulligan, Mark J. Rigali
  • Patent number: 6524522
    Abstract: The present invention relates to the extrusion freeform fabrication of low cost, in situ, metallic foam components having oriented microstructures and improved mechanical properties such as energy absorption and specific stiffness. The present invention relates to the freeform fabrication of metallic foams to form parts having complex geometry that demonstrate superior mechanical properties and energy absorbing capacity.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: February 25, 2003
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, John L. Lombardi, Joseph Walish, Ronald A. Cipriani
  • Publication number: 20020192101
    Abstract: The present invention relates to the extrusion freeform fabrication of low cost, in situ, metallic foam components having oriented microstructures and improved mechanical properties such as energy absorption and specific stiffness. The present invention relates to the freeform fabrication of metallic foams to form parts having complex geometry that demonstrate superior mechanical properties and energy absorbing capacity.
    Type: Application
    Filed: March 7, 2002
    Publication date: December 19, 2002
    Inventors: K. Ranji Vaidyanathan, John L. Lombardi, Joseph Walish, Ronald A. Cipriani
  • Publication number: 20020173575
    Abstract: The present invention relates to a low density, water-soluble coring and tooling material used for the fabrication of composite parts. One aspect of the present invention relates to a lightweight, strong composite coring material that can be easily shaped and removed from cured composite parts. Another aspect of the present invention relates to a lightweight, strong composite tooling material that is easily tailored to provide a specific coefficient of thermal expansion and thermal conductivity, thus providing a tooling material that can be matched to the composite structure and material being fabricated.
    Type: Application
    Filed: March 6, 2002
    Publication date: November 21, 2002
    Inventors: Gregory J. Artz, John L. Lombardi, K. Ranji Vaidyanathan, Joseph Walish
  • Publication number: 20020165304
    Abstract: Method and apparatus for producing objects from fibrous monolith composites are provided. Two- and three-dimensional objects can be prepared from a continuous fibrous monolith filament. The objects can have complex geometries.
    Type: Application
    Filed: December 4, 2001
    Publication date: November 7, 2002
    Inventors: Anthony C. Mulligan, Mark J. Rigali, Manish P. Sutaria, Gregory J. Artz, Felix H. Gafner, K. Ranji Vaidyanathan
  • Publication number: 20020143403
    Abstract: The present invention relates to biomedical implants for bone substitution and replacement applications. The implant includes a strong, porous polymeric or thermoplastic compositions and growth-enhancing compositions.
    Type: Application
    Filed: January 2, 2002
    Publication date: October 3, 2002
    Inventors: K. Ranji Vaidyanathan, Joseph Walish, Paul D. Calvert