Patents by Inventor Kabir Mirpuri

Kabir Mirpuri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113069
    Abstract: An electronic component includes a device die and a substrate. The device die includes conductive contacts with conductive pillars conductively affixed to conductive contact. The conductive pillars include a cavity formed in an end of the conductive pillar opposite the conductive contact. The substrate includes of conductive pads that are each associated with one of the conductive contacts. The conductive pads include a conductive pad conductively affixed to the substrate, and a conductive ring situated within a cavity in the end conductive rings have a capillary formed along an axis of the conductive ring. A solder material fills the capillary of each of the conductive rings and the cavity formed in the end of the associated conductive pillars to form a conductive joint between the pillars and the conductive pads.
    Type: Application
    Filed: December 11, 2023
    Publication date: April 4, 2024
    Inventor: Kabir Mirpuri
  • Patent number: 11935809
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: March 19, 2024
    Assignee: NXP USA, INC.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Patent number: 11875988
    Abstract: An electronic component includes a device die and a substrate. The device die includes conductive contacts with conductive pillars conductively affixed to conductive contact. The conductive pillars include a cavity formed in an end of the conductive pillar opposite the conductive contact. The substrate includes of conductive pads that are each associated with one of the conductive contacts. The conductive pads include a conductive pad conductively affixed to the substrate, and a conductive ring situated within a cavity in the end conductive rings have a capillary formed along an axis of the conductive ring. A solder material fills the capillary of each of the conductive rings and the cavity formed in the end of the associated conductive pillars to form a conductive joint between the pillars and the conductive pads.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 16, 2024
    Assignee: NXP USA, INC.
    Inventor: Kabir Mirpuri
  • Patent number: 11817366
    Abstract: A semiconductor device package having a thermal dissipation feature is provided. The semiconductor device package includes a package substrate. A semiconductor die is mounted on a first surface of the package substrate. A first conductive connector is affixed to a first connector pad of the package substrate. A conformal thermal conductive layer is applied on the semiconductor die and a portion of the first surface of the package substrate. The conformal thermal conductive layer is configured and arranged as a thermal conduction path between the semiconductor die and the first conductive connector.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: November 14, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Kabir Mirpuri, Rushik P. Tank, Betty Hill-Shan Yeung
  • Patent number: 11721642
    Abstract: A packaged semiconductor device is provided. The packaged semiconductor device includes a semiconductor die affixed to a package substrate. A conductive connector is affixed to the package substrate. A collar is formed around a perimeter of the conductive connector at a conductive connector to package substrate transition. A reinforcement structure is embedded in the collar. The reinforcement structure substantially surrounds the conductive connector at the conductive connector to package substrate transition.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: August 8, 2023
    Assignee: NXP USA, INC.
    Inventor: Kabir Mirpuri
  • Patent number: 11705410
    Abstract: A semiconductor device having an integrated antenna is provided. The semiconductor device includes a base die having an integrated circuit formed at an active surface and a cap die bonded to the backside surface of the base die. A metal trace is formed over a top surface of the cap die. A cavity is formed under the metal trace. A conductive via is formed through the base die and the cap die interconnecting the metal trace and a conductive trace of the integrated circuit.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: July 18, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Vivek Gupta, Richard Te Gan, Kabir Mirpuri
  • Publication number: 20230106555
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Patent number: 11557525
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 17, 2023
    Assignee: NXP USA, INC.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Publication number: 20220406728
    Abstract: A packaged semiconductor device is provided. The packaged semiconductor device includes a semiconductor die affixed to a package substrate. A conductive connector is affixed to the package substrate. A collar is formed around a perimeter of the conductive connector at a conductive connector to package substrate transition. A reinforcement structure is embedded in the collar. The reinforcement structure substantially surrounds the conductive connector at the conductive connector to package substrate transition.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Inventor: Kabir Mirpuri
  • Patent number: 11521947
    Abstract: An apparatus includes an Integrated Circuit (IC). A first pillar includes a first end and a second end. The first end is connected to the IC and the second end includes a first attachment point collinear with a first central axis of the first pillar. The first attachment point includes a first solder volume capacity. A second pillar includes a third end and a fourth end. The third end is connected to the IC and the fourth end includes a second attachment point disposed on a side of the second pillar facing the first pillar. The second attachment point includes a second solder volume capacity being less than the first solder volume capacity. A first distance between the first end and the second end is less than a second distance between the third end and the fourth end.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: December 6, 2022
    Assignee: NXP USA, INC.
    Inventor: Kabir Mirpuri
  • Publication number: 20220384299
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Applicant: NXP USA, Inc.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Patent number: 11515238
    Abstract: A power die package includes a lead frame having a flag with power leads on one lateral side and signal leads on one or more other lateral sides. A power die is attached to a bottom surface of the flag and electrically connected to the power leads with a conductive epoxy. A control die is attached to a top surface of the flag and electrically connected to the signal leads with bond wires. A mold compound is provided that encapsulates the dies, the bond wires, and proximal parts of the leads, while distal ends of the leads are exposed, forming a PQFN package.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: November 29, 2022
    Assignee: NXP USA, INC.
    Inventors: You Ge, Meng Kong Lye, Zhijie Wang, Kabir Mirpuri
  • Publication number: 20220352115
    Abstract: An electronic component includes a device die and a substrate. The device die includes conductive contacts with conductive pillars conductively affixed to conductive contact. The conductive pillars include a cavity formed in an end of the conductive pillar opposite the conductive contact. The substrate includes of conductive pads that are each associated with one of the conductive contacts. The conductive pads include a conductive pad conductively affixed to the substrate, and a conductive ring situated within a cavity in the end conductive rings have a capillary formed along an axis of the conductive ring. A solder material fills the capillary of each of the conductive rings and the cavity formed in the end of the associated conductive pillars to form a conductive joint between the pillars and the conductive pads.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 3, 2022
    Inventor: Kabir Mirpuri
  • Publication number: 20220344235
    Abstract: A semiconductor device package having a thermal dissipation feature is provided. The semiconductor device package includes a package substrate. A semiconductor die is mounted on a first surface of the package substrate. A thermal conductive structure including a die pad portion is affixed to the semiconductor die. A limb portion of the thermal conductive structure extends laterally away from the die pad portion and overlaps a portion of the package substrate. A thermal conduction path is formed between the semiconductor die and a distal end of the limb portion.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 27, 2022
    Inventors: Scott M. Hayes, Michael B. Vincent, Zhiwei Gong, Rushik P. Tank, Kabir Mirpuri, Betty Hill-Shan Yeung
  • Publication number: 20220189890
    Abstract: A semiconductor device having an integrated antenna is provided. The semiconductor device includes a base die having an integrated circuit formed at an active surface and a cap die bonded to the backside surface of the base die. A metal trace is formed over a top surface of the cap die. A cavity is formed under the metal trace. A conductive via is formed through the base die and the cap die interconnecting the metal trace and a conductive trace of the integrated circuit.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 16, 2022
    Inventors: Michael B. Vincent, Vivek Gupta, Richard Te Gan, Kabir Mirpuri
  • Publication number: 20220181230
    Abstract: A semiconductor device package having a thermal dissipation feature is provided. The semiconductor device package includes a package substrate. A semiconductor die is mounted on a first surface of the package substrate. A first conductive connector is affixed to a first connector pad of the package substrate. A conformal thermal conductive layer is applied on the semiconductor die and a portion of the first surface of the package substrate. The conformal thermal conductive layer is configured and arranged as a thermal conduction path between the semiconductor die and the first conductive connector.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Kabir Mirpuri, Rushik P. Tank, Betty Hill-Shan Yeung
  • Publication number: 20200411423
    Abstract: A power die package includes a lead frame having a flag with power leads on one lateral side and signal leads on one or more other lateral sides. A power die is attached to a bottom surface of the flag and electrically connected to the power leads with a conductive epoxy. A control die is attached to a top surface of the flag and electrically connected to the signal leads with bond wires. A mold compound is provided that encapsulates the dies, the bond wires, and proximal parts of the leads, while distal ends of the leads are exposed, forming a PQFN package.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 31, 2020
    Inventors: You Ge, Meng Kong Lye, Zhijie Wang, Kabir Mirpuri