Patents by Inventor Kagehiro Kageyama

Kagehiro Kageyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8216745
    Abstract: A halftone mask increasing the versatility of an etching stopper layer. The half tone mask (10) is provided with a transparent portion (TA) using a glass substrate (S), a first semi-transparent portion (HA) including a first semi-transparent layer (11) formed on the glass substrate, and a light shield portion (PA) including a first semi-transparent portion, a light shield layer (13) superimposed above the first semi-transparent layer, and an etching stopper layer (12) formed between the first semi-transparent layer and the light shield layer. The first semi-transparent layer and the light shield layer are each formed from Cr or at least one selected from the group consisting of an oxide, nitride, carbide, oxynitride, oxycarbide, carbonitride, and oxycarbonitride of Cr. The etching stopper layer includes a first element of at least one selected from the group consisting of Fe, Ni, and Co and a second element of at least one selected from the group consisting of Al, Si, Ti, Nb, Ta, Hf, and Zr.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: July 10, 2012
    Assignee: ULVAC Coating Corporation
    Inventors: Kagehiro Kageyama, Fumihiko Yamada
  • Publication number: 20100294651
    Abstract: A method for manufacturing a gray-tone mask that decreases the wavelength dependency with respect to an exposure wavelength under stable and simple film formation conditions. A reactive sputtering method that sputters a pure Cr target in an atmosphere of Ar and NO is used to form a Cr nitride film having a single-layer structure. Based on a plurality of different spectral transmittance curves obtained under a plurality of film formation conditions having different NO concentrations, a target concentration (intermediate value) for NO is obtained that sets the transmittance uniformity of the semi-transparent film to 1.0% or less in the range of 365 nm to 436 nm or 4.0% or less in the range of 300 nm to 500 nm. Then, a semi-transparent film is formed by using the NO target concentration.
    Type: Application
    Filed: October 9, 2008
    Publication date: November 25, 2010
    Applicant: ULVAC COATING CORPORATION
    Inventors: Fumihiko Yamada, Toshiharu Ozaki, Takaei Sasaki, Masahiko Ishizuka, Kagehiro Kageyama, Hiroyuki Iso, Ryouichi Kobayashi, Atsushi Hayashi
  • Publication number: 20100261096
    Abstract: A halftone mask increasing the versatility of an etching stopper layer. The half tone mask (10) is provided with a transparent portion (TA) using a glass substrate (S), a first semi-transparent portion (HA) including a first semi-transparent layer (11) formed on the glass substrate, and a light shield portion (PA) including a first semi-transparent portion, a light shield layer (13) superimposed above the first semi-transparent layer, and an etching stopper layer (12) formed between the first semi-transparent layer and the light shield layer. The first semi-transparent layer and the light shield layer are each formed from Cr or at least one selected from the group consisting of an oxide, nitride, carbide, oxynitride, oxycarbide, carbonitride, and oxycarbonitride of Cr. The etching stopper layer includes a first element of at least one selected from the group consisting of Fe, Ni, and Co and a second element of at least one selected from the group consisting of Al, Si, Ti, Nb, Ta, Hf, and Zr.
    Type: Application
    Filed: October 29, 2008
    Publication date: October 14, 2010
    Applicant: ULVAC Coating Corporation
    Inventors: Kagehiro Kageyama, Fumihiko Yamada
  • Patent number: 6627118
    Abstract: A crystalline Ni alloy particle for an anisotropic conductive film comprising Ni and a metalloid element such as P, B, etc. and having a structure in which a Ni intermetallic compound phase is precipitated can be produced by preparing substantially amorphous Ni alloy particle by an electroless reduction method, and heat-treating the substantially amorphous Ni alloy particle. The Ni alloy particle is preferably heat-treated after disintegration, and preferably coated with Au.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: September 30, 2003
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kagehiro Kageyama, Koji Sato
  • Publication number: 20020003227
    Abstract: A crystalline Ni alloy particle for an anisotropic conductive film comprising Ni and a metalloid element such as P, B, etc. and having a structure in which a Ni intermetallic compound phase is precipitated can be produced by preparing substantially amorphous Ni alloy particle by an electroless reduction method, and heat-treating the substantially amorphous Ni alloy particle. The Ni alloy particle is preferably heat-treated after disintegration, and preferably coated with Au.
    Type: Application
    Filed: April 23, 2001
    Publication date: January 10, 2002
    Inventors: Kagehiro Kageyama, Koji Sato
  • Patent number: 6051083
    Abstract: In order to provide a high strength Ni-base superalloy for directionally solidified castings, which is prevented from solidification cracking at the casting, having a sufficient grain boundary strength for ensuring reliability during its operation and a superior high temperature concurrently, a high strength Ni-base superalloy for directionally solidified castings having a superior grain boundary strength, which contains C: 0.05% to less than 0.1%, B: 0.015% to 0.04%, Hf: 0.01.about.less than 0.5%, Zr: less than 0.01%, Cr: 1.5%.about.16%, Mo: utmost 6%, W: 2.about.12%, Re: 0.1.about.9%, Ta: 2.about.12%, Nb: utmost 4%, Al: 4.5.about.6.5%, Ti: less than 0.5%, Co: less than 9%, and Ni: at least 60% in weight, is disclosed.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: April 18, 2000
    Assignees: Hitachi, Ltd., Hitachi Metals
    Inventors: Hideki Tamaki, Akira Yoshinari, Akira Okayama, Mitsuru Kobayashi, Kagehiro Kageyama, Takehiro Ohno