Patents by Inventor Kai-An Wang

Kai-An Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7534080
    Abstract: An apparatus for processing a work piece in a vacuum environment includes a master process chamber configured to be exhausted to a sub-atmospheric air pressure or to be filled with a desirable gas, a transfer chamber configured to receive the work piece from outside of the master process chamber, one or more processing stations inside the master process chamber, a rotation plate configured to receive the work piece and to move the work piece to receive one or more processing operations, and a first transport mechanism configured to transfer the work piece from the transfer chamber on to the rotation plate. The transfer chamber is at least partially enclosed in the master process chamber and can be vacuum sealed off from the master process chamber.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: May 19, 2009
    Assignee: Ascentool, Inc.
    Inventors: George Xinsheng Guo, Kai-An Wang
  • Patent number: 7469558
    Abstract: An as-deposited waveguide structure is formed by a vapor deposition process without etching of core material. A planar optical device of a lighthouse design includes a ridge-structured lower cladding layer of a low refractive index material. The lower cladding layer has a planar portion and a ridge portion extending above the planar portion. A core layer of a core material having a higher refractive index than the low refractive index material of the lower cladding layer overlies the top of the ridge portion of the lower cladding. A slab layer of the core material overlies the planar portion of the lower cladding layer. The lighthouse waveguide also includes a top cladding layer of a material having a lower refractive index than the core material, overlying the core layer and the slab layer. A method of forming an as-deposited waveguide structure includes first forming a ridge structure in a layer of low refractive index material to provide a lower cladding layer.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: December 30, 2008
    Assignee: SpringWorks, LLC
    Inventors: Richard E. Demaray, Kai-An Wang, Ravi B. Mullapudi, Qing Zhu, Hongmei Zhang, Harold D. Ackler, John C. Egermeier, Rajiv Pethe
  • Patent number: 7442665
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: October 28, 2008
    Assignees: The Regents of the University of California, Symyx Technologies, Inc.
    Inventors: Peter G. Schultz, Xiaodong Xiang, Isy Goldwasser, Gabriel Brice{hacek over (n)}o, Xiao-Dong Sun, Kai-An Wang
  • Patent number: 7320858
    Abstract: A combinatorial method for discovering or optimizing materials is disclosed. The method uses solution-based components that are mixed and dispensed into regions on a substrate for drying and/or heat-treating. The drying and/or heat-treating produces materials that can be tested for a desired property.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: January 22, 2008
    Assignee: The Regents of the University of California
    Inventors: Daniel M. Giaquinta, Martin Devenney, Keith A. Hall, Isy Goldwasser, Peter G. Schultz, Xiao-Dong Xiang, Xiao-Dong Sun, Gabriel BriceƱo, Kai-An Wang
  • Publication number: 20070059127
    Abstract: An apparatus for processing a work piece in a vacuum environment includes a master process chamber configured to be exhausted to a sub-atmospheric air pressure or to be filled with a desirable gas, a transfer chamber configured to receive the work piece from outside of the master process chamber, one or more processing stations inside the master process chamber, a rotation plate configured to receive the work piece and to move the work piece to receive one or more processing operations, and a first transport mechanism configured to transfer the work piece from the transfer chamber on to the rotation plate. The transfer chamber is at least partially enclosed in the master process chamber and can be vacuum sealed off from the master process chamber.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 15, 2007
    Inventors: George Guo, Kai-An Wang
  • Patent number: 7034091
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: April 25, 2006
    Assignees: The Regents of the University of California, Symyx Technologies, Inc.
    Inventors: Peter G. Schultz, Xiao-Dong Xiang, Isy Goldwasser, Gabriel Briceno, Xiao-Dong Sun, Kai-An Wang
  • Publication number: 20050260332
    Abstract: A combinatorial method for discovering or optimizing materials is disclosed. The method uses solution-based components that are mixed and dispensed into regions on a substrate for drying and/or heat-treating. The drying and/or heat-treating produces materials that can be tested for a desired property.
    Type: Application
    Filed: March 31, 2003
    Publication date: November 24, 2005
    Inventors: Daniel Giaquinta, Martin Devenney, Keith Hall, Isy Goldwasser, Peter Schultz, Xiao-Dong Xiang, Xiao-Dong Sun, Gabriel Briceno, Kai-An Wang
  • Patent number: 6864201
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: March 8, 2005
    Assignees: The Regents of the University of California, Symyx Technologies, Inc.
    Inventors: Peter G. Schultz, Xiaodong Xiang, Isy Goldwasser, Gabriel Briceno, Xiao-Dong Sun, Kai-An Wang
  • Patent number: 6827826
    Abstract: Physical vapor deposition processes provide optical materials with controlled and uniform refractive index that meet the requirements for active and passive planar optical devices. All processes use radio frequency (RF) sputtering with a wide area target, larger in area than the substrate on which material is deposited, and uniform plasma conditions which provide uniform target erosion. In addition, a second RF frequency can be applied to the sputtering target and RF power can be applied to the substrate producing substrate bias. Multiple approaches for controlling refractive index are provided. The present RF sputtering methods for material deposition and refractive index control are combined with processes commonly used in semiconductor fabrication to produce planar optical devices such surface ridge devices, buried ridge devices and buried trench devices. A method for forming composite wide area targets from multiple tiles is also provided.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: December 7, 2004
    Assignee: Symmorphix, Inc.
    Inventors: Richard E. Demaray, Kai-An Wang, Ravi B. Mullapudi, Douglas P. Stadtler, Hongmei Zhang, Rajiv Pethe
  • Publication number: 20040154704
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 12, 2004
    Applicant: The Regents of the University of California and Symyx Technologies, Inc.
    Inventors: Peter G. Schultz, Xiao-Dong Xiang, Isy Goldwasser, Gabriel Briceno, Xiao-Dong Sun, Kai-An Wang
  • Publication number: 20040014077
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Application
    Filed: January 23, 2003
    Publication date: January 22, 2004
    Inventors: Peter G. Schultz, Xiao-Dong Xiang, Isy Goldwasser, Gabriel Briceno, Xiao-Dong Sun, Kai-An Wang
  • Publication number: 20030127319
    Abstract: Physical vapor deposition processes provide optical materials with controlled and uniform refractive index that meet the requirements for active and passive planar optical devices. All processes use radio frequency (RF) sputtering with a wide area target, larger in area than the substrate on which material is deposited, and uniform plasma conditions which provide uniform target erosion. In addition, a second RF frequency can be applied to the sputtering target and RF power can be applied to the substrate producing substrate bias. Multiple approaches for controlling refractive index are provided. The present RF sputtering methods for material deposition and refractive index control are combined with processes commonly used in semiconductor fabrication to produce planar optical devices such surface ridge devices, buried ridge devices and buried trench devices. A method for forming composite wide area targets from multiple tiles is also provided.
    Type: Application
    Filed: November 4, 2002
    Publication date: July 10, 2003
    Inventors: Richard E. Demaray, Kai-An Wang, Ravi B. Mullapudi, Douglas P. Stadtler, Hongmei Zhang, Rajiv Pethe
  • Publication number: 20030063883
    Abstract: An as-deposited waveguide structure is formed by a vapor deposition process without etching of core material. A planar optical device of a lighthouse design includes a ridge-structured lower cladding layer of a low refractive index material. The lower cladding layer has a planar portion and a ridge portion extending above the planar portion. A core layer of a core material having a higher refractive index than the low refractive index material of the lower cladding layer overlies the top of the ridge portion of the lower cladding. A slab layer of the core material overlies the planar portion of the lower cladding layer. The lighthouse waveguide also includes a top cladding layer of a material having a lower refractive index than the core material, overlying the core layer and the slab layer. A method of forming an as-deposited waveguide structure includes first forming a ridge structure in a layer of low refractive index material to provide a lower cladding layer.
    Type: Application
    Filed: July 10, 2001
    Publication date: April 3, 2003
    Inventors: Richard E. Demaray, Kai-An Wang, Ravi B. Mullapudi, Qing Zhu, Hongmei Zhang, Harold D. Ackler, John C. Egermeier, Rajiv Pethe
  • Patent number: 6533907
    Abstract: A specialized physical vapor deposition process provides dense amorphous semiconducting material with exceptionally smooth morphology. In particular, the process provides dense, smooth amorphous silicon useful as a hard mask for etching optical and semiconductor devices and as a high refractive index material in optical devices. DC sputtering of a planar target of intrinsic crystalline semiconducting material in the presence of a sputtering gas under a condition of uniform target erosion is used to deposit amorphous semiconducting material on a substrate. DC power that is modulated by AC power is applied to the target. The process provides dense, smooth amorphous silicon at high deposition rates. A method of patterning a material layer including forming a hard mask layer of amorphous silicon on a material layer according to the present DC sputtering process is also provided.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: March 18, 2003
    Assignee: Symmorphix, Inc.
    Inventors: Richard E. Demaray, Jesse Shan, Kai-An Wang, Ravi B. Mullapudi
  • Patent number: 6506289
    Abstract: Physical vapor deposition processes provide optical materials with controlled and uniform refractive index that meet the requirements for active and passive planar optical devices. All processes use radio frequency (RF) sputtering with a wide area target, larger in area than the substrate on which material is deposited, and uniform plasma conditions which provide uniform target erosion. In addition, a second RF frequency can be applied to the sputtering target and RF power can be applied to the substrate producing substrate bias. Multiple approaches for controlling refractive index are provided. The present RF sputtering methods for material deposition and refractive index control are combined with processes commonly used in semiconductor fabrication to produce planar optical devices such surface ridge devices, buried ridge devices and buried trench devices. A method for forming composite wide area targets from multiple tiles is also provided.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: January 14, 2003
    Assignee: Symmorphix, Inc.
    Inventors: Richard E. Demaray, Kai-An Wang, Ravi B. Mullapudi, Douglas P. Stadtler, Hongmei Zhang, Rajiv Pethe
  • Patent number: 6472329
    Abstract: A process and apparatus for etching an exposed region of a multi-layer metal having at least two layers: a layer of aluminum or aluminum alloy, and an underlying layer of refractory metal. The etching process includes at least two steps. In a first step, the aluminum layer is etched by processing the substrate with a first plasma chemistry that etches aluminum. Optionally a portion, but not all, of the refractory metal layer also is etched by the first plasma chemistry. In a subsequent second step, the remainder of the refractory metal layer is etched by a second plasma chemistry that etches the lower refractory metal much faster than it etches aluminum. The invention minimizes undercutting of the aluminum side wall as the refractory metal layer becomes depleted.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: October 29, 2002
    Assignee: Applied Komatsu Technology, Inc.
    Inventors: Haruhiro Harry Goto, Kai-An Wang, Jenny T. Tran
  • Publication number: 20020134671
    Abstract: A specialized physical vapor deposition process provides dense amorphous semiconducting material with exceptionally smooth morphology. In particular, the process provides dense, smooth amorphous silicon useful as a hard mask for etching optical and semiconductor devices and as a high refractive index material in optical devices. DC sputtering of a planar target of intrinsic crystalline semiconducting material in the presence of a sputtering gas under a condition of uniform target erosion is used to deposit amorphous semiconducting material on a substrate. DC power that is modulated by AC power is applied to the target. The process provides dense, smooth amorphous silicon at high deposition rates. A method of patterning a material layer including forming a hard mask layer of amorphous silicon on a material layer according to the present DC sputtering process is also provided.
    Type: Application
    Filed: January 19, 2001
    Publication date: September 26, 2002
    Inventors: Richard E. Demaray, Jesse Shan, Kai-An Wang, Ravi B. Mullapudi
  • Publication number: 20020033330
    Abstract: Physical vapor deposition processes provide optical materials with controlled and uniform refractive index that meet the requirements for active and passive planar optical devices. All processes use radio frequency (RF) sputtering with a wide area target, larger in area than the substrate on which material is deposited, and uniform plasma conditions which provide uniform target erosion. In addition, a second RF frequency can be applied to the sputtering target and RF power can be applied to the substrate producing substrate bias. Multiple approaches for controlling refractive index are provided. The present RF sputtering methods for material deposition and refractive index control are combined with processes commonly used in semiconductor fabrication to produce planar optical devices such surface ridge devices, buried ridge devices and buried trench devices. A method for forming composite wide area targets from multiple tiles is also provided.
    Type: Application
    Filed: July 10, 2001
    Publication date: March 21, 2002
    Inventors: Richard E. Demaray, Kai-An Wang, Ravi B. Mullapudi, Douglas P. Stadtler, Hongmei Zhang, Rajiv Pethe