Patents by Inventor Kai BONGS

Kai BONGS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136785
    Abstract: A single arm laser system comprising a first in-phase quadrature modulator, IQM. The first IQM is configured to receive a single frequency fibred laser beam from a frequency locked laser seed, generate a first single side-band frequency based on a carrier frequency of the single frequency fibred laser beam and suppress the carrier frequency, and output a first fibre laser beam having a single side-band suppressed carrier frequency. The single arm laser system also comprises a second IQM in line with the first IQM. The second IQM is configured to receive the first fibre laser beam from the first IQM, generate a second single side-band frequency based on the first single side-band frequency and maintain the first single side-band frequency as the carrier frequency, and output a second fibre laser beam having the first and second single side band frequencies.
    Type: Application
    Filed: February 11, 2022
    Publication date: April 25, 2024
    Applicant: The University of Birmingham
    Inventors: Kai BONGS, Mehdi LANGLOIS, Luuk EARL, Michael HOLYNSKI
  • Publication number: 20240134084
    Abstract: An apparatus for generating vertically separated atom clouds. The apparatus comprises an optical system comprising an arrangement of lenses and optics. The optical system is configured to trap and cool atoms to form a cold atom cloud; select the hyperfine level of the atoms; trap atoms of the cold atom cloud in a standing wave optical lattice; and vertically split the cold atom cloud into a high cold atom cloud and a low cold atom cloud. The splitting comprises splitting the cold atom cloud into two clouds by launching atoms of the cold atom cloud in opposite directions to form a high cold atom cloud and a low cold atom cloud, and catching the low cold atom cloud up to reach the same velocity as the high cold atom cloud.
    Type: Application
    Filed: February 11, 2022
    Publication date: April 25, 2024
    Applicant: The University of Birmingham
    Inventors: Kai BONGS, Mehdi LANGLOIS, Luuk EARL, Michael HOLYNSKI
  • Patent number: 11967700
    Abstract: A non-aqueous electrolyte secondary battery that has a low initial resistance and an increase in resistance after charging and discharging is suppressed. The secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer, which contains a lithium composite oxide having a layered structure. The lithium composite oxide is a porous particle. A surface of the porous particle includes a layer having a rock salt type structure. A thickness of the layer is not less than 5 nm and not more than 80 nm. A void ratio of the porous particle is not less than 15% and not more than 48%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle includes a coating of lithium tungstate.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 23, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11962000
    Abstract: A non-aqueous electrolyte secondary battery is obtained using a lithium composite oxide having a layered structure in a positive electrode active substance. An increase in resistance following repeated charging and discharging is suppressed. The battery includes a positive electrode provided with a positive electrode active substance layer, a negative electrode and a non-aqueous electrolyte. The positive electrode active substance layer contains a porous particle lithium composite oxide having a layered structure. The average void ratio of the porous particle is not less than 12% but not more than 50%, and it contains two or more voids having diameters that are at least 8% of its particle diameter. The surface of the porous particle is provided with a coating of lithium tungstate. The coverage ratio of the surface of the porous particle by the lithium tungstate is not less than 10% but not more than 65%.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 16, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11923534
    Abstract: A non-aqueous electrolyte secondary battery which is obtained using a lithium composite oxide having a layered structure and coated with a tungsten-containing compound in a positive electrode active substance, and which has a low initial resistance, and in which an increase in resistance following repeated charging and discharging is suppressed. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer containing a lithium composite oxide having a layered structure. The lithium composite oxide includes a porous particle having a void ratio of not less than 20% but not more than 50%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle is provided with a coating containing tungsten oxide and lithium tungstate.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 5, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11923533
    Abstract: A non-aqueous electrolyte secondary battery is obtained using a lithium composite oxide having a layered structure in a positive electrode active substance. An increase in resistance following repeated charging and discharging is suppressed. The battery includes a positive electrode provided with a positive electrode active substance layer, a negative electrode and a non-aqueous electrolyte. The positive electrode active substance layer contains a porous particle lithium composite oxide having a layered structure. The average void ratio of the porous particle is not less than 12% but not more than 50%, and it contains two or more voids having diameters that are at least 8% of its particle diameter. The surface of the porous particle is provided with a coating of lithium tungstate. The coverage ratio of the surface of the porous particle by the lithium tungstate is not less than 10% but not more than 65%.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 5, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11777084
    Abstract: A non-aqueous electrolyte secondary battery which is obtained using a lithium composite oxide having a layered structure and coated with a tungsten-containing compound in a positive electrode active substance, and which has a low initial resistance, and in which an increase in resistance following repeated charging and discharging is suppressed. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer containing a lithium composite oxide having a layered structure. The lithium composite oxide includes a porous particle having a void ratio of not less than 20% but not more than 50%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle is provided with a coating containing tungsten oxide and lithium tungstate.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: October 3, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Publication number: 20230288183
    Abstract: The application discloses an atom interferometer comprising an optical cavity and method of operation thereof. The atom interferometer includes a vacuum chamber, an optical cavity, a source for providing a cloud of atoms in the optical cavity in use, and one or more light sources. The one or more light sources are for generating, in the cavity, in use a first light beam having a first polarisation and at a first frequency for a two-photon interaction in the atoms; and a counterpropagating second light beam having a second polarisation orthogonal to the first polarisation and at a second frequency for the two-photon interaction in the atoms.
    Type: Application
    Filed: July 19, 2021
    Publication date: September 14, 2023
    Inventors: Kai BONGS, Michael HOLYNSKI, Rustin NOURSHARGH
  • Patent number: 11757085
    Abstract: Provided is a nonaqueous electrolyte secondary battery with a positive electrode active material that contains an excess of Li and has a layered structure, the nonaqueous electrolyte secondary battery having a high output and enabling prevention of gelation of the positive electrode active material layer-forming paste during production. The herein disclosed nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes a positive electrode active material layer. The positive electrode active material layer contains a lithium composite oxide having a layered structure as a positive electrode active material. The compositional ratio of the lithium atom to the metal atom other than a lithium atom contained in the lithium composite oxide is greater than 1. The lithium composite oxide is in the form of porous particles.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: September 12, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Patent number: 11747375
    Abstract: A power monitoring device (PMD) can perform real-time remote managing, status reporting and analysis on the health/condition of equipment connected to the PMD. For example, a PMD provides data such as whether the equipment connected is idling, fully operating, malfunctioning, etc. The PMD can turn the power on/off, trigger system alert, and perform time-delayed or special profile programming to manage and monitor equipment usage. A power signature identification capability can identify what equipment such as monitor, laptop, lighting equipment, etc., are being connected. A configuration can be used by the power management device based at least in part on the waveform information (e.g., device model, activity status, etc.). Real-time diagnosis and collection of energy consumption and usage pattern can be aggregated for planning and management. Asset management can be enabled by discovering which models of devices are active and connected to a predetermined power management device.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: September 5, 2023
    Assignees: Targus International LLC
    Inventors: Ronald DeCamp, Dan Tsang, David Kai Bong Mak, Paul Dale, Jay Turner
  • Publication number: 20220384804
    Abstract: A positive electrode active material is constituted by lithium transition metal-containing composite oxide particles having a layered rock salt type crystal structure and are composed of secondary particles each formed of an aggregation of primary particles. The secondary particles have a d50 of 3.0 to 7.0 ?m, a BET specific surface area of 1.8 to 5.5 m2/g, a pore peak diameter of 0.01 to 0.30 ?m, and a log differential pore volume [dV/d(log D)] of 0.2 to 0.6 ml/g within a range of the pore peak diameter. In each of a plurality of primary particles having a primary particle size of 0.1 to 1.0 ?m, a coefficient of variation of the concentration of an additive element M is 1.5 or less.
    Type: Application
    Filed: September 18, 2020
    Publication date: December 1, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tetsutaro Hayashi, Shun Kai Bong, Toshihiro Kato
  • Publication number: 20220376243
    Abstract: The positive electrode active material is capable of reducing positive electrode resistance, exhibiting better output characteristics, and having high mechanical strength when the positive electrode active material is used in a lithium ion secondary battery. Secondary particles have a d50 of 3.0 to 7.0 ?m, a BET specific surface area of 2.0 to 5.0 m2/g, a tap density of 1.0 to 2.0 g/cm3, and an oil absorption amount of 30 to 60 ml/100 g. In each of a plurality of primary particles having a primary particle size of 0.1 to 1.0 ?m, a coefficient of variation of the concentration of an additive element M is 1.5 or less. The volume of a linking section between the primary particles per primary particle, obtained from the total volume of the linking section and the number of primary particles constituting the secondary particles, is 5×105 to 9×107 nm3.
    Type: Application
    Filed: September 18, 2020
    Publication date: November 24, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tetsutaro Hayashi, Shun Kai Bong, Shinsuke Suganuma, Toshihiro Kato, Jiro Okada
  • Publication number: 20220367859
    Abstract: A positive electrode active material includes lithium transition metal-containing composite oxide particles containing an additive element M1 and includes a coating layer formed of a metal composite oxide of Li and a metal element M2 on a part of a surface of the particles. The particles have a d50 of 3.0 to 7.0 ?m, a BET specific surface area of 2.0 to 5.0 m2/g, a tap density of 1.0 to 2.0 g/cm3, and an oil absorption amount of 30 to 60 ml/100 g. For each of a plurality of primary particles having a primary particle size within a range of 0.1 to 1.0 ?m among the primary particles, a coefficient of variation of the concentration of M1 is 1.5 or less, and the amount of M2 is 0.1 to 1.5 atom % with respect to the total number of atoms of Ni, Mn, and Co contained in the composite oxide particles.
    Type: Application
    Filed: September 18, 2020
    Publication date: November 17, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tetsutaro Hayashi, Shun Kai Bong, Shinsuke Suganuma, Toshihiro Kato
  • Publication number: 20220344656
    Abstract: To provide a positive electrode active material capable of further reducing positive electrode resistance and exhibiting better output characteristics. A positive electrode active material includes a coating layer formed of a metal composite oxide of Li and one or more metal elements selected from Al, Ti, Zr, Nb, Mo, and W on at least a part of a surface of lithium transition metal-containing composite oxide particles, and has d50 of 3.0 to 7.0 ?m, a BET specific surface area of 2.0 to 5.0 m2/g, a tap density of 1.0 to 2.0 g/cm3, and an oil absorption amount of 30 to 60 ml/100 g, in which the amount of metal elements other than Li contained in the coating layer is 0.1 to 1.5 atom % with respect to the total number of atoms of Ni, Mn, and Co contained in the composite oxide particles.
    Type: Application
    Filed: September 18, 2020
    Publication date: October 27, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tetsutaro Hayashi, Shun Kai Bong, Shinsuke Suganuma, Toshihiro Kato
  • Publication number: 20220271272
    Abstract: The method includes: a dry mixing process of mixing a tungsten compound with a lithium nickel manganese cobalt-containing composite oxide that is a base material to obtain a mixture; a water spray mixing process of spraying water to the mixture while the mixture is stirred, to mix the mixture; a heat treatment process of subjecting the mixture obtained after the water spray mixing process to a heat treatment at a temperature of 500° C. or lower; and a drying process of drying the mixture obtained after the heat treatment process at a temperature of 500° C. or lower to obtain a W- and Li-containing compound-coated lithium nickel manganese cobalt-containing composite oxide in which fine particles and coating films of a W- and Li-containing compound exist on a surface of the primary particles, and in at least drying process, the drying is performed using a vacuum dry mixing apparatus in a vacuum atmosphere.
    Type: Application
    Filed: June 8, 2020
    Publication date: August 25, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Toshihiro Kato, Tetsutaro Hayashi, Willy Shun Kai Bong
  • Publication number: 20220170967
    Abstract: A power monitoring device (PMD) can perform real-time remote managing, status reporting and analysis on the health/condition of equipment connected to the PMD. For example, a PMD provides data such as whether the equipment connected is idling, fully operating, malfunctioning, etc. The PMD can turn the power on/off, trigger system alert, and perform time-delayed or special profile programming to manage and monitor equipment usage. A power signature identification capability can identify what equipment such as monitor, laptop, lighting equipment, etc., are being connected. A configuration can be used by the power management device based at least in part on the waveform information (e.g., device model, activity status, etc.). Real-time diagnosis and collection of energy consumption and usage pattern can be aggregated for planning and management. Asset management can be enabled by discovering which models of devices are active and connected to a predetermined power management device.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 2, 2022
    Inventors: Ronald DeCamp, Dan Tsang, David Kai Bong Mak, Paul Dale, Jay Turner
  • Patent number: 11303088
    Abstract: An optical frequency manipulation using an optical subsystem configured to provide a modulated laser beam for interaction with an atomic sample. The optical system may include: an optical subsystem for producing a light beam, the optical subsystem having a laser source and an IQ modulator, wherein the IQ modulator is operable to modulate light from the laser source at a carrier frequency to produce modulated light having a single sideband at a sideband frequency; and a chamber for containing an atomic sample, wherein the optical subsystem is arranged to direct the light beam towards the chamber to interact with an atomic sample contained therein.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: April 12, 2022
    Assignee: THE UNIVERSITY OF BIRMINGHAM
    Inventors: Yu-Hung Lien, Michael Holynski, Lingxiao Zhu, Kai Bongs
  • Patent number: 11269111
    Abstract: The disclosure relates to a gravity gradiometer including a pair of magneto-optical traps for measuring a gravity gradient. A cold atom gravity gradiometer system includes comprising: first and second magneto-optical traps, each having a plurality of mirrored surfaces arranged to reflect an incident laser beam to trap respective first and second cold atom clouds separated from each other by a separation distance; an optical subsystem arranged to transmit a first laser beam in a first direction along a first longitudinal axis towards the first magneto-optical trap and a second laser beam in an opposite second direction along a second longitudinal axis towards the second magneto-optical trap, the second longitudinal axis being parallel to the first longitudinal axis.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 8, 2022
    Assignee: THE UNIVERSITY OF BIRMINGHAM
    Inventors: Andrew Lamb, Geoff De Villiers, Michael Holynski, Kai Bongs
  • Patent number: 11231448
    Abstract: A power monitoring device (PMD) can perform real-time remote managing, status reporting and analysis on the health/condition of equipment connected to the PMD. For example, a PMD provides data such as whether the equipment connected is idling, fully operating, malfunctioning, etc. The PMD can turn the power on/off, trigger system alert, and perform time-delayed or special profile programming to manage and monitor equipment usage. A power signature identification capability can identify what equipment such as monitor, laptop, lighting equipment, etc., are being connected. A configuration can be used by the power management device based at least in part on the waveform information (e.g., device model, activity status, etc.). Real-time diagnosis and collection of energy consumption and usage pattern can be aggregated for planning and management. Asset management can be enabled by discovering which models of devices are active and connected to a predetermined power management device.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 25, 2022
    Assignees: Targus International LLC, Targus Group (UK) LTD
    Inventors: Ronald DeCamp, Dan Tsang, David Kai Bong Mak, Paul Dale, Jay Turner
  • Publication number: 20210020925
    Abstract: The present disclosure can bring excellent output characteristics to a nonaqueous electrolyte secondary battery that uses a cathode active material containing tungsten while desired durability is secured. The battery of the present disclosure includes a cathode, an anode, and a nonaqueous electrolyte. The cathode includes a cathode active material layer that contains a granular cathode active material. The cathode active material includes a core part that contains a lithium-transition metal composite oxide of a layered structure; a tungsten-concentrated layer that is formed over a surface of the core part and has a higher tungsten concentration than in the core part; and a lithium-tungsten compound particle that adheres to at least part of a surface of the tungsten-concentrated layer and contains tungsten and lithium. In the battery of the present disclosure, the tungsten-concentrated layer has an amorphous structure. This can bring excellent output characteristics while desired durability is secured.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 21, 2021
    Applicants: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuji Yamamoto, Momoko Procter, Yoshinari Makimura, Tetsutaro Hayashi, Willy Shun Kai Bong