Patents by Inventor Kai-Chi Chen

Kai-Chi Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9617411
    Abstract: An organic-inorganic hybrid resin, a molding composition, and a photoelectric device employing the same are disclosed. The organic-inorganic hybrid resin is a reaction product of a composition, wherein the composition includes: 0.1-10 parts by weight of reactant (a), and 100 parts by weight of reactant (b). In particular, the reactant (a) is a silsesquioxane prepolymer with metal oxide clusters, and the metal oxide cluster includes Ti, Zr, Zn, or a combination thereof. The reactant (b) includes an epoxy resin.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: April 11, 2017
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ying-Nan Chan, Shu-Chen Huang, Wen-Bin Chen, Kai-Chi Chen, Chih-Hao Lin, Hsun-Tien Li
  • Patent number: 9540488
    Abstract: A siloxane resin and photoelectric device employing the same are provided. The siloxane resin composition includes (a) 45-87 parts by weight of a first siloxane compound represented by Formula (I), wherein each R1 is independently C1-3 alkyl group, and n is an integer from 2 to 15; (b) 5-35 parts by weight of a second siloxane compound represented by Formula (II), wherein each R2 and R3 are independently C1-3 alkyl group; each R4 is independently C1-3 alkyl group, or epoxy group; x?1, y?2, and x/y is from about 0.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 10, 2017
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Hao Lin, Wen-Bin Chen, Ying-Nan Chan, Shu-Chen Huang, Kai-Chi Chen
  • Publication number: 20150197631
    Abstract: An organic-inorganic hybrid resin, a molding composition, and a photoelectric device employing the same are disclosed. The organic-inorganic hybrid resin is a reaction product of a composition, wherein the composition includes: 0.1-10 parts by weight of reactant (a), and 100 parts by weight of reactant (b). In particular, the reactant (a) is a silsesquioxane prepolymer with metal oxide clusters, and the metal oxide cluster includes Ti, Zr, Zn, or a combination thereof. The reactant (b) includes an epoxy resin.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 16, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ying-Nan CHAN, Shu-Chen HUANG, Wen-Bin CHEN, Kai-Chi CHEN, Chih-Hao LIN, Hsun-Tien LI
  • Patent number: 8013039
    Abstract: An encapsulant composition for a light-emitting diode is provided. One embodiment of the encapsulant composition comprises: (a) about 100 parts by weight of at least one liquid bi-functional epoxy resin containing about 40˜50 weight % of aromatic ring; (b) about 55˜120 parts by weight of a curing agent comprising at least one bi-functional thiol curing agent containing aromatic ring and at least one aliphatic tetra-functional thiol curing agent, wherein the curing agent contains about 10˜50 weight % of aromatic ring and about 20˜35 weight % of sulfur; and (c) about 0.05˜0.5 parts by weight of a catalyst. The encapsulant composition having a high refractive index can be used for a solid state light emitting device to enhance light extraction efficiency.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: September 6, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Chia-Wen Hsu, Hsun-Tien Li, Kai-Chi Chen
  • Publication number: 20090093570
    Abstract: An encapsulant composition for a light-emitting diode is provided. One embodiment of the encapsulant composition comprises: (a) about 100 parts by weight of at least one liquid bi-functional epoxy resin containing about 40˜50 weight % of aromatic ring; (b) about 55˜120 parts by weight of a curing agent comprising at least one bi-functional thiol curing agent containing aromatic ring and at least one aliphatic tetra-functional thiol curing agent, wherein the curing agent contains about 10˜50 weight % of aromatic ring and about 20˜35 weight % of sulfur; and (c) about 0.05˜0.5 parts by weight of a catalyst. The encapsulant composition having a high refractive index can be used for a solid state light emitting device to enhance light extraction efficiency.
    Type: Application
    Filed: June 27, 2008
    Publication date: April 9, 2009
    Inventors: Chia-Wen Hsu, Hsun-Tien Li, Kai-Chi Chen
  • Patent number: 7230331
    Abstract: A chip package structure and a process for fabricating the same is disclosed. The chip package structure mainly comprises a carrier, a chip and an encapsulating material layer. To fabricate the chip package, a carrier and a plurality of chips are provided. Each chip has at least an active surface with a plurality of bumps thereon. The chips and the carrier are electrically connected. An encapsulating material layer that fills the bonding gap between the chips and the carriers and covers the chips and carrier is formed. The encapsulating material layer between the chips and the carrier has a first thickness and the encapsulating material layer over the chips has a second thickness. The second thickness has a value between half to twice the first thickness.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: June 12, 2007
    Assignees: Industrial Technology Research Institute, Matsushita Electric Works, Ltd.
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro Fukui, Tomoaki Nemoto
  • Publication number: 20070072339
    Abstract: A process for fabricating a chip package structure is disclosed. To fabricate the chip package structure, a carrier and a plurality of chips are provided. Each chip has an active surface and at least one of the active surfaces has a plurality of bumps thereon. The chips and the carrier are electrically connected together. Thereafter, a heat sink is attached to the back of the chips and then at least one heat-resistant buffering film is formed over part of the heat sink surface. An encapsulating material layer is formed over the carrier and filling bonding gaps between the chips and the carrier. The encapsulating material within the bonding gaps has a thickness. The maximum diameter of particles constituting the encapsulating material layer is less than half of the said thickness.
    Type: Application
    Filed: June 23, 2006
    Publication date: March 29, 2007
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro Fukui, Tomoaki Nemoto
  • Publication number: 20060261499
    Abstract: A chip package structure and a process for fabricating the same is disclosed. The chip package structure mainly comprises a carrier, a chip and an encapsulating material layer. To fabricate the chip package, a carrier and a plurality of chips are provided. Each chip has at least an active surface with a plurality of bumps thereon. The chips and the carrier are electrically connected. An encapsulating material layer that fills the bonding gap between the chips and the carriers and covers the chips and carrier is formed. The encapsulating material layer between the chips and the carrier has a first thickness and the encapsulating material layer over the chips has a second thickness. The second thickness has a value between half to twice the first thickness.
    Type: Application
    Filed: August 4, 2006
    Publication date: November 23, 2006
    Applicants: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, MATSUSHITA ELECTRIC WORKS, LTD.
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro Fukui, Tomoaki Nemoto
  • Patent number: 7061103
    Abstract: A chip package structure is disclosed. The chip package structure essentially comprises a carrier, one or more chips, a heat sink and an encapsulating material layer. At least one of the chips is flip-chip bonded and electrically connected to the carrier or another chip. There is a flip-chip bonding gap between the chip and the carrier or other chips. A heat sink is positioned on the uppermost chip. The encapsulating material layer fills the flip-chip bonding gap as well as a gap between the uppermost chip and the heat sink. A part of the surface of the heat sink away from the upper-most chip is exposed. Furthermore, the encapsulating material layer is formed in a simultaneous molding process. For example, the chip is separated from the heat sink by a distance between 0.03˜0.2 mm, and the encapsulating material has a thermal conductivity greater than 1.2 W/m.K.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: June 13, 2006
    Assignees: Industrial Technology Research Institute, Matsushita Electric Works, Ltd.
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro Fukui, Tomoaki Nemoto
  • Patent number: 7057277
    Abstract: A chip package structure is disclosed. The chip package structure essentially comprises a carrier, one or more chips, a heat sink and an encapsulating material layer. At least one of the chips is bonded and electrically connected to the carrier or another chip using a flip-chip bonding technique. A flip-chip bonding gap is set up between the chip and he carrier or other chips. The heat sink is set up over the top chip. The heat sink has an area bigger than the chip. The encapsulating material layer fills up the flip-chip bonding gap and covers the carrier as well as the heat sink. The encapsulating material layer is formed in a simultaneous molding process and has a thermal conductivity more than 1.2 W/m.K. Furthermore, a plurality of standoff components may be selectively positioned on the heat sink.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: June 6, 2006
    Assignees: Industrial Technology Research Institute, Matsushita Electric Works, Ltd.
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro Fukui, Tomoaki Nemoto
  • Publication number: 20050087852
    Abstract: A chip package structure and a process for fabricating the same is disclosed. The chip package structure mainly comprises a carrier, a chip and an encapsulating material layer. To fabricate the chip package, a carrier and a plurality of chips are provided. Each chip has at least an active surface with a plurality of bumps thereon. The chips and the carrier are electrically connected. An encapsulating material layer that fills the bonding gap between the chips and the carriers and covers the chips and carrier is formed. The encapsulating material layer between the chips and the carrier has a first thickness and the encapsulating material layer over the chips has a second thickness. The second thickness has a value between half to twice the first thickness.
    Type: Application
    Filed: January 5, 2004
    Publication date: April 28, 2005
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro FUKUI, Tomoaki NEMOTO
  • Patent number: 6841094
    Abstract: Fine conductive particles are composed of metallic conductive powder, and an insulating organic capping layer on the grains of the powder. The metallic conductive powder have grains with a diameter ranging from 1 to 20 microns, and the capping layer has a thickness of 50-400 nm, which is able to flow by thermo-pressing. The insulating organic capping layer is prepared from a silane having a reactive functionality, a fluorine-containing silane and a compound or a resin having a functionality able to reactive with the reactive functionality.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: January 11, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Hsun-Tien Li, Shu-Chen Huang, Kai-Chi Chen
  • Patent number: 6821818
    Abstract: A method of assembling a semiconductor device forming an encapsulant. The method includes providing a substrate having a plurality of semiconductor devices, respectively connecting a semiconductor chip electrically to a predetermined encapsulation area on a surface of the substrate, filling an encapsulant overlying the predetermined encapsulation area using stencil printing, sweeping excess encapsulant over the predetermined encapsulation area at a first air pressure below approximately 1 atm, sweeping encapsulant overlying the predetermined encapsulation area over the encapsulant overlying the predetermined encapsulation area using stencil printing at a second air pressure above the first air pressure, and hardening the encapsulant at a third air pressure above approximately 1 atm.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: November 23, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Kai-Chi Chen, Hsun-Tien Li
  • Publication number: 20040212080
    Abstract: A chip package structure and a process for fabricating the same is disclosed. The chip package structure essentially comprises a carrier, one or more chips, a heat sink and an encapsulating material layer. To fabricate the chip package structure, a carrier and a plurality of chips are provided. Each chip has an active surface and at least one of the active surfaces has a plurality of bumps thereon. The chips and the carrier are electrically connected together. Thereafter, a heat sink is attached to the back of the chips and then at least one heat-resistant buffering film is formed over part of the heat sink surface. An encapsulating material layer is formed over the carrier and filling bonding gaps between the chips and the carrier. The encapsulating material within the bonding gaps has a thickness. The maximum diameter of particles constituting the encapsulating material layer is less than half of the said thickness.
    Type: Application
    Filed: January 5, 2004
    Publication date: October 28, 2004
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro FUKUI, Tomoaki NEMOTO
  • Publication number: 20040212056
    Abstract: A chip package structure is disclosed. The chip package structure essentially comprises a carrier, one or more chips, a heat sink and an encapsulating material layer. At least one of the chips is bonded and electrically connected to the carrier or another chip using a flip-chip bonding technique. A flip-chip bonding gap is set up between the chip and he carrier or other chips. The heat sink is set up over the top chip. The heat sink has an area bigger than the chip. The encapsulating material layer fills up the flip-chip bonding gap and covers the carrier as well as the heat sink. The encapsulating material layer is formed in a simultaneous molding process and has a thermal conductivity more than 1.2 W/m.K. Furthermore, a plurality of standoff components may be selectively positioned on the heat sink.
    Type: Application
    Filed: January 5, 2004
    Publication date: October 28, 2004
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro FUKUI, Tomoaki NEMOTO
  • Publication number: 20040212970
    Abstract: A chip package structure is disclosed. The chip package structure essentially comprises a carrier, one or more chips, a heat sink and an encapsulating material layer. At least one of the chips is flip-chip bonded and electrically connected to the carrier or another chip. There is a flip-chip bonding gap between the chip and the carrier or other chips. A heat sink is positioned on the uppermost chip. The encapsulating material layer fills the flip-chip bonding gap as well as a gap between the uppermost chip and the heat sink. A part of the surface of the heat sink away from the upper-most chip is exposed. Furthermore, the encapsulating material layer is formed in a simultaneous molding process. For example, the chip is separated from the heat sink by a distance between 0.03˜0.2 mm, and the encapsulating material has a thermal conductivity greater than 1.2 W/m.K.
    Type: Application
    Filed: January 5, 2004
    Publication date: October 28, 2004
    Inventors: Kai-Chi Chen, Shu-Chen Huang, Hsun-Tien Li, Tzong-Ming Lee, Taro FUKUI, Tomoaki NEMOTO
  • Publication number: 20040180472
    Abstract: A method of assembling a semiconductor device forming an encapsulant. The method includes providing a substrate having a plurality of semiconductor devices, respectively connecting a semiconductor chip electrically to a predetermined encapsulation area on a surface of the substrate, filling an encapsulant overlying the predetermined encapsulation area using stencil printing, sweeping excess encapsulant over the predetermined encapsulation area at a first air pressure below approximately 1 atm, sweeping encapsulant overlying the predetermined encapsulation area over the encapsulant overlying the predetermined encapsulation area using stencil printing at a second air pressure above the first air pressure, and hardening the encapsulant at a third air pressure above approximately 1 atm.
    Type: Application
    Filed: July 14, 2003
    Publication date: September 16, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Kai-Chi Chen, Hsun-Tien Li
  • Publication number: 20040056236
    Abstract: Fine conductive particles are composed of metallic conductive powder, and an insulating organic capping layer on the grains of the powder. The metallic conductive powder have grains with a diameter ranging from 1 to 20 microns, and the capping layer has a thickness of 50-400 nm, which is able to flow by thermo-pressing. The insulating organic capping layer is prepared from a silane having a reactive functionality, a fluorine-containing silane and a compound or a resin having a functionality able to reactive with the reactive functionality.
    Type: Application
    Filed: September 19, 2002
    Publication date: March 25, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Hsun-Tien Li, Shu-Chen Huang, Kai-Chi Chen
  • Patent number: 6627684
    Abstract: The present invention discloses a dielectric composition having two steps of laminating temperatures. The composition is comprised of: a diamine curing agent containing asymmetrical chemical structures with different reactivity; an epoxy resin compound, containing at least two epoxy groups; and inorganic powder. In addition, flame retardant and toughener are added dependent on the requirements.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: September 30, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Tzong-Ming Lee, Hsun-Tien Li, Kai-Chi Chen, Mei-Ling Chen
  • Publication number: 20020123540
    Abstract: The present invention discloses a dielectric composition having two steps of laminating temperatures. The composition is comprised of: a diamine curing agent containing asymmetrical chemical structures with different reactivity; an epoxy resin compound, containing at least two epoxy groups; and inorganic powder. In addition, flame retardant and toughener are added dependent on the requirements.
    Type: Application
    Filed: December 18, 2001
    Publication date: September 5, 2002
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tzong-Ming Lee, Hsun-Tien Li, Kai-Chi Chen, Mei-Ling Chen