Patents by Inventor Kai Dickopf
Kai Dickopf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10309905Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.Type: GrantFiled: May 24, 2018Date of Patent: June 4, 2019Assignee: Roche Diabetes Care, Inc.Inventor: Kai Dickopf
-
Publication number: 20180266965Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.Type: ApplicationFiled: May 24, 2018Publication date: September 20, 2018Applicant: Roche Diabetes Care, Inc.Inventor: Kai Dickopf
-
Patent number: 9983140Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.Type: GrantFiled: February 8, 2016Date of Patent: May 29, 2018Assignee: Roche Diabetes Care, Inc.Inventor: Kai Dickopf
-
Publication number: 20160153912Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.Type: ApplicationFiled: February 8, 2016Publication date: June 2, 2016Inventor: Kai Dickopf
-
Patent number: 9255885Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.Type: GrantFiled: December 22, 2014Date of Patent: February 9, 2016Assignee: Roche Diabetes Care, Inc.Inventor: Kai Dickopf
-
Publication number: 20150111236Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.Type: ApplicationFiled: December 22, 2014Publication date: April 23, 2015Inventor: Kai Dickopf
-
Patent number: 7477404Abstract: The invention relates to embodiments of a method and a system for monitoring the correct positioning of a test element in a test element receptacle of an analysis unit, the test element carrying a sample to be analyzed by the analysis unit. Using a delimiting element, responsive signals resulting from irradiating an analysis region on the test element are effectively prevented from impinging upon a signal detector when the analysis region is in an incorrect position relative to the analysis unit. The delimiting element is provided with a light-opaque region and a light-transmissive region, and the light-opaque region is positioned such that responsive signals impinge upon it rather than the light-transmissive region when the analysis region is in an incorrect position.Type: GrantFiled: August 31, 2007Date of Patent: January 13, 2009Assignee: Roche Diagnostics Operations, Inc.Inventors: Jochen Schulat, Bernd Stenkamp, Guenter Schmelzeisen-Redeker, Wilfried Schmid, Dieter Meinecke, Kai Dickopf, Gertrud Albrecht, Andreas Menke, Bernhard Kern, Wolfgang Schwoebel, Stefan Kalveram
-
Publication number: 20080106730Abstract: The invention relates to embodiments of a method and a system for monitoring the correct positioning of a test element in a test element receptacle of an analysis unit, the test element carrying a sample to be analyzed by the analysis unit. Using a delimiting element, responsive signals resulting from irradiating an analysis region on the test element are effectively prevented from impinging upon a signal detector when the analysis region is in an incorrect position relative to the analysis unit. The delimiting element is provided with a light-opaque region and a light-transmissive region, and the light-opaque region is positioned such that responsive signals impinge upon it rather than the light-transmissive region when the analysis region is in an incorrect position.Type: ApplicationFiled: August 31, 2007Publication date: May 8, 2008Inventors: Jochen Schulat, Bernd Stenkamp, Guenter Schmelzeisen-Redeker, Wilfried Schmid, Dieter Meinecke, Kai Dickopf, Gertrud Albrecht, Andreas Menke, Bernhard Kern, Wolfgang Schwoebel, Stefan Kalveram