Patents by Inventor Kai-Hsiang Chuang

Kai-Hsiang Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11691922
    Abstract: A ceramic composite and a method of preparing the same are provided. The method of preparing the ceramic composite includes mixing an aluminum slag and a carbon accelerator to obtain a mixture and reacting the mixture at a temperature equal to or greater than 1600° C. in a nitrogen atmosphere to obtain a ceramic composite. The aluminum slag includes aluminum, oxygen, nitrogen, and magnesium. The weight ratio of the oxygen to the aluminum is 0.6 to 2. The weight ratio of the nitrogen to the aluminum is 0.1 to 1.2. The weight ratio of the magnesium to the aluminum is 0.04 to 0.2. The ceramic composite includes aluminum nitride accounting for at least 90 wt % of the ceramic composite.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: July 4, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Hui Chang, Hsueh-Ping Weng, Sheng-Min Yu, Kai-Hsiang Chuang
  • Publication number: 20230076574
    Abstract: A ceramic composite and a method of preparing the same are provided. The method of preparing the ceramic composite includes mixing an aluminum slag and a carbon accelerator to obtain a mixture and reacting the mixture at a temperature equal to or greater than 1600° C. in a nitrogen atmosphere to obtain a ceramic composite. The aluminum slag includes aluminum, oxygen, nitrogen, and magnesium. The weight ratio of the oxygen to the aluminum is 0.6 to 2. The weight ratio of the nitrogen to the aluminum is 0.1 to 1.2. The weight ratio of the magnesium to the aluminum is 0.04 to 0.2. The ceramic composite includes aluminum nitride accounting for at least 90 wt % of the ceramic composite.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 9, 2023
    Inventors: Ming-Hui CHANG, Hsueh-Ping WENG, Sheng-Min YU, Kai-Hsiang CHUANG
  • Patent number: 11076483
    Abstract: A direct bonded copper ceramic substrate is provided, which includes a nitride ceramic substrate, a first passivation layer, and a first copper layer. The first passivation layer includes aluminum oxide or silicon oxide doped with another metal. The other metal is titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, or a combination thereof. The aluminum or silicon and the other metal have a weight ratio of 60:40 to 99.5:0.5. The first passivation layer is disposed between the top surface of the nitride ceramic substrate and the first copper layer.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: July 27, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kai-Hsiang Chuang, Chien-Chiang Hsu, Chien-Chung Hsu, Kuo-Chuang Chiu
  • Publication number: 20210161006
    Abstract: A direct bonded copper ceramic substrate is provided, which includes a nitride ceramic substrate, a first passivation layer, and a first copper layer. The first passivation layer includes aluminum oxide or silicon oxide doped with another metal. The other metal is titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, or a combination thereof. The aluminum or silicon and the other metal have a weight ratio of 60:40 to 99.5:0.5. The first passivation layer is disposed between the top surface of the nitride ceramic substrate and the first copper layer.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 27, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kai-Hsiang CHUANG, Chien-Chiang HSU, Chien-Chung HSU, Kuo-Chuang CHIU
  • Patent number: 10974994
    Abstract: A method of forming a core-shell composite material includes depositing a polysiloxane shell to wrap a ceramic core via chemical vapor deposition for forming a core-shell composite material, wherein the ceramic core is an oxide of metal and silicon, which includes 100 parts by weight of calcium, 50 to 95 parts by weight of iron, 15 to 40 parts by weight of silicon, 2 to 15 parts by weight of magnesium, 2 to 20 parts by weight of aluminum, and 2 to 10 parts by weight of manganese.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: April 13, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Sheng-Min Yu, Chien-Chung Hsu, Kai-Hsiang Chuang, Ming-Hui Chang
  • Patent number: 10252215
    Abstract: A composition and a device for purification of nitrogen-oxide-containing gas is provided. It can purify harmful nitrogen-oxide-containing gases, such as nitric oxide or nitrogen dioxide. The composition includes an alkaline substance and at least one organic acid, the organic acids having an enediol group, enediamine group, or amine group of cyclopentane compounds, cyclohexane compounds, cycloheptane compounds, or phenanthrene compounds.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: April 9, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Kai-Hsiang Chuang, Kuo-Chuang Chiu, Kuan-Yi Li
  • Publication number: 20180104643
    Abstract: A composition and a device for purification of nitrogen-oxide-containing gas is provided. It can purify harmful nitrogen-oxide-containing gases, such as nitric oxide or nitrogen dioxide. The composition includes an alkaline substance and at least one organic acid, the organic acids having an enediol group, enediamine group, or amine group of cyclopentane compounds, cyclohexane compounds, cycloheptane compounds, or phenanthrene compounds.
    Type: Application
    Filed: March 17, 2017
    Publication date: April 19, 2018
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kai-Hsiang CHUANG, Kuo-Chuang CHIU, Kuan-Yi LI
  • Publication number: 20120177531
    Abstract: A powder composition and a sintered body thereof are presented. The powder is a martensitic stainless steel powder for powder injection molding without deformation problems during sintering. The powder composition includes 0.80-1.40 weight percent (wt %) of carbon (C), less than 1.0 wt % of silicon (Si), less than 1.0 wt % of manganese (Mn), 15.0-18.0 wt % of chromium (Cr), 0.10-2.50 wt % of titanium (Ti), and the remainder iron (Fe). The powder can be sintered with a sintering temperature varying within 50° C. and can reach a high density without distortion, and thereby a good dimensional stability is obtained.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 12, 2012
    Applicant: TAIWAN POWDER TECHNOLOGIES CO., LTD.
    Inventors: Kai Hsiang Chuang, Kuen Shyang Hwang
  • Publication number: 20120103413
    Abstract: A thin-film solar cell includes a body and a polymer layer. The body includes a first electrode layer, a photoelectric conversion layer, and a second electrode layer, and the polymer layer includes a hardening material and an interface material. The photoelectric conversion layer is disposed between the first electrode layer and the second electrode layer, and the polymer layer surrounds the photoelectric conversion layer, in which the interface material is used for bonding to the hardening material and the photoelectric conversion layer respectively. Therefore, the thin-film solar cell may reduce the Staebler-Wronski Effect generated by the photoelectric conversion layer in the photoelectric conversion procedure. Accordingly, the photoelectric conversion efficiency is improved.
    Type: Application
    Filed: January 11, 2012
    Publication date: May 3, 2012
    Applicant: AURIA SOLAR CO., LTD.
    Inventors: Chin-Yao Tsai, Chih-Wei Chang, Ching-In Wu, Kai-Hsiang Chuang, Chih-Hsiung Chang, Kun-Chih Lin
  • Publication number: 20120107170
    Abstract: A steel powder and their sintered body comprise iron as its primary component and further comprise from 1.4 to 2.0% by weight of carbon, less than 1.0% by weight of silicon, less than 1.0% by weight of manganese, from 11.0 to 13.0% by weight of chromium, from 0.3 to 2.3% by weight of titanium, less than 0.75% by weight of a combination of copper and nickel, and less than 5.0% by weight of at least one strengthening element. During sintering, titanium carbide inhibits grain coarsening, whereby the sintering window can be expanded to about 50° C.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Inventors: Kuen-Shyang HWANG, Kai-Hsiang Chuang