Patents by Inventor Kai Karlsson

Kai Karlsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9572948
    Abstract: A liquid separator removing a liquid from a sample of a breathing gas flowing through an airway adapter having a channel surrounded by a wall is disclosed herein. The separator includes a chamber receiving the sample, and a membrane having an outer surface exposed to the gas flow, the membrane at least partially surrounding the chamber, which membrane separates the liquid received by the chamber. The separator also includes a supporting structure for supporting the membrane, and a connector operationally attached to the supporting structure, the connector being connectable to the adapter. The connector comprises a cavity providing a flow path for the sample from the chamber through an opening of the cavity to a sample tube. The membrane branches from a central part of the channel into at least two different branches extending to different directions.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 21, 2017
    Assignee: General Electric Company
    Inventors: Heikki Haveri, Kurt Weckstrom, Kai Karlsson, Jani Kauppi, Anne Paykkonen, Timo Holopainen, Mikael Alanen
  • Publication number: 20150174358
    Abstract: A liquid separator removing a liquid from a sample of a breathing gas flowing through an airway adapter having a channel surrounded by a wall is disclosed herein. The separator includes a chamber receiving the sample, and a membrane having an outer surface exposed to the gas flow, the membrane at least partially surrounding the chamber, which membrane separates the liquid received by the chamber. The separator also includes a supporting structure for supporting the membrane, and a connector operationally attached to the supporting structure, the connector being connectable to the adapter. The connector comprises a cavity providing a flow path for the sample from the chamber through an opening of the cavity to a sample tube. The membrane branches from a central part of the channel into at least two different branches extending to different directions.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Heikki Haveri, Kurt Weckstrom, Kai Karlsson, Jani Kauppi, Anne Paykkonen, Timo Holopainen, Mikael Alanen
  • Publication number: 20130023782
    Abstract: A gas sensor is disclosed herein. The gas sensor includes an emitter for emitting radiation to a body at least partly coated with a luminophore emitting luminescent radiation indicative of an oxygen concentration when in contact with a respiratory gas. The gas sensor also includes a filter for transmitting the luminescent radiation emitted by the luminophore and an oxygen detector for receiving the luminescent radiation transmitted by the filter. The gas sensor also includes an infrared thermometry unit for receiving a thermal radiation from the luminophore. A gas analyzer and a method for measuring oxygen concentration of a respiratory gas are also provided.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Kai Karlsson
  • Patent number: 8230858
    Abstract: A method for controlling a respiratory gas monitor device, which includes at least one respiratory gas analyzer, a gas sampling line, a gas pump for sucking sample(s) of respiratory gas from the gas sampling line. Also included are a power supply and a processing unit, and a pressure sensor connected to the gas sampling line and electrically connected to the processing unit. A minimum value and a maximum value in a signal from the patient are detected by the processing unit, and a difference between the minimum value and the maximum value is calculated. The value of this difference is compared with a predetermined threshold value. If the calculated difference is below the threshold value, the pump is switched off or kept non-operating by the processing unit. If the calculated difference is over the threshold value, the pump is switched on or kept operating by the processing unit.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: July 31, 2012
    Assignee: General Electric Company
    Inventor: Kai Karlsson
  • Publication number: 20100102235
    Abstract: A thermopile sensor for detecting infrared radiation arriving in an axial entering direction. The thermopile sensor comprises a metal housing that has a base section and a mantle section, a cavity between said mantle section and said base section, an opening in said mantle section opposite said base section for entering of said infrared radiation, thermopile chip on a top surface of the base section, electrical connectors connected to said thermopile chip(s) and which extending through said metal, and a radiation transparent window. Said thermopile sensor is a miniature sensor construction, in which said cavity has an inner dimension adapted for at least one thermopile chip. Said base section has an outer base dimension and a base thickness forming the first part of a thermal mass, and said mantle section extends with a length from said base section and has a wall thickness around said opening forming a second part of said thermal mass, which surrounds said thermopile chip.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 29, 2010
    Inventors: Heikki Haveri, Kurt Peter Weckström, Kai Karlsson
  • Publication number: 20090288661
    Abstract: An arrangement for supervising a medical monitor. The arrangement for supervising the medical monitor comprises a measurement function having at least one measurement device to make at least one measurement for obtaining measurement information for monitoring one or more patient care signals. The arrangement for supervising the medical monitor also includes a supervision analyzer configured to communicate with the measuring function and to receive the measurement information. The supervision analyzer is adapted to obtain reference information and to compare the measurement information to the reference information to determine whether the measurement function is working properly.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 26, 2009
    Inventors: Erkki Paavo Heinonen, Heikki Antti Mikael Haveri, Kai Karlsson, Kurt Peter Weckstrom
  • Publication number: 20090241954
    Abstract: The invention concerns a method for controlling a respiratory gas monitor device, which typically comprises at least one respiratory gas analyzer, a gas sampling line, a gas pump for sucking sample(s) of respiratory gas from said gas sampling line, a power supply and a processing unit, and a pressure sensor pressure-connected to said gas sampling line and electrical-signal-connected to said processing unit. A minimum value and a maximum value in a signal from the patient are detected by said processing unit, and a difference between said minimum value and said maximum value is calculated, and is compared with a predetermined threshold value. If said calculated difference is below said threshold value said pump is switched off or kept non-operating by said processing unit, and if over said threshold value said pump is switched on or kept operating by said processing unit.
    Type: Application
    Filed: April 1, 2008
    Publication date: October 1, 2009
    Inventor: Kai KARLSSON
  • Publication number: 20090143996
    Abstract: An airway sensor includes a gas analyzing apparatus for analyzing at least one respiratory gas and a connecting unit for communication with a remotely located host device. The gas analyzing apparatus connected to a sensor electronics and which sensor electronics is also common for flow measuring device for measuring respiratory gas flow and pressure measuring device for measuring respiratory airway pressure when connected to said sensor electronics.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Inventors: Kai Karlsson, Heikki Antti Mikael Haveri
  • Patent number: 7132658
    Abstract: A non-dispersive infrared measuring arrangement for a multigas analyzer is described having a radiation source (10), a measuring chamber (20), a beam splitter (3), at least a first and a second detector unit (21, 22) both with at least two detectors (1a, 1b; 2a, 2b); and optical filters in radiation beam portions ending in said detectors. The detector units receive the reflected beam portions (RR) and the transmitted beam portion (RT). Both the first and second detector units (21, 22) have: at least one measuring detectors (1a, 1b) provided with an optical measurement filter (5a, 5b); and at least one reference detectors (2a, 2b) provided with an optical reference filter (6a, 6b). Alternatively, the first detector unit (21) has at least two measuring detectors (1a, 1b) each provided with an optical measurement filter (5a, 5b), and the second detector unit (22) has at least two reference detectors (2a, 2b) each provided with an optical reference filter (6a, 6b).
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: November 7, 2006
    Assignee: Instrumentarium Corp.
    Inventors: Kurt Weckström, Kai Karlsson
  • Publication number: 20050012042
    Abstract: A non-dispersive infrared measuring arrangement for a multigas analyzer is described having a radiation source (10), a measuring chamber (20), a beam splitter (3), at least a first and a second detector unit (21, 22) both with at least two detectors (1a, 1b; 2a, 2b); and optical filters in radiation beam portions ending in said detectors. The detector units receive the reflected beam portions (RR) and the transmitted beam portion (RT). Both the first and second detector units (21, 22) have: at least one measuring detectors (1a, 1b) provided with an optical measurement filter (5a, 5b); and at least one reference detectors (2a, 2b) provided with an optical reference filter (6a, 6b). Alternatively, the first detector unit (21) has at least two measuring detectors (1a, 1b) each provided with an optical measurement filter (5a, 5b), and the second detector unit (22) has at least two reference detectors (2a, 2b) each provided with an optical reference filter (6a, 6b).
    Type: Application
    Filed: May 28, 2004
    Publication date: January 20, 2005
    Inventors: Kurt Weckstrom, Kai Karlsson
  • Patent number: 6844554
    Abstract: The invention relates to a method and an apparatus for non-dispersive analysis of gas mixtures for determining the concentration of such a first gas component in a gas mixture, whose absorbance may be influenced by other gas components of said gas mixture. The apparatus comprises a sample chamber (2) for containing the gas mixture, a radiation source (1) for transmitting radiation through the gas mixture, a first optical transmission band filter (5) with a first absorption transmission band of the first gas and a first radiation detector (4). The apparatus further comprises a second optical transmission band filter (8) with a second transmission band, which is outside the first transmission band, and a second detector (7). The concentration determining means (23) are arranged to determine the concentration of the first gas using a certain formula or formulas and using the detected intensities.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: January 18, 2005
    Assignee: Instrumentarium Corp.
    Inventor: Kai Karlsson
  • Publication number: 20040000643
    Abstract: The invention relates to a method and an apparatus for non-dispersive analysis of gas mixtures for determining the concentration of such a first gas component in a gas mixture, whose absorbance may be influenced by other gas components of said gas mixture. The apparatus comprises a sample chamber (2) for containing the gas mixture, a radiation source (1) for transmitting radiation through the gas mixture, a first optical transmission band filter (5) with a first absorption transmission band of the first gas and a first radiation detector (4). The apparatus further comprises a second optical transmission band filter (8) with a second transmission band, which is outside the first transmission band, and a second detector (7). The concentration determining means (23) are arranged to determine the concentration of the first gas using a certain formula or formulas and using the detected intensities.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 1, 2004
    Inventor: Kai Karlsson
  • Patent number: 6046814
    Abstract: The invention relates to an additional feature for use in a measuring sensor which is used for analyzing mediums spectroscopically. The measuring sensor comprises: a radiation source (1), emitting radiation which travels through a first window (3a) of a sample chamber (2), an absorption length (L1) and further a second window (3b) of the sample chamber (2), the sample chamber being provided, if necessary, with flow connections for a gas mixture; at least done detector (9), which is optically directed towards the second window; at least one optical filter (8), which is permeable to a certain wavelength band, or a radiation dispersion device between the radiation source and the detector. Between the first sample chamber window and the radiation source, the feature comprises a length (L2) and/or, between the second window and the detector, a length (L3), totalling at least about 20% of the absorption length.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: April 4, 2000
    Assignee: Instrumentarium Oy
    Inventors: Kai Karlsson, Kurt Peter Weckstrom
  • Patent number: 6034360
    Abstract: Infrared radiator has a heating element (1) heated by electric current and a first thermocouple (2) thermally coupled to the heating element to measure its temperature. According to the invention, the first thermocouple (2) is electrically so connected to the heating element (1) that the electric current used to heat the heating element flows through the thermocouple. The invention allows the temperature of the heating element to be measured without the use of a separate temperature detector, which would cause problems.
    Type: Grant
    Filed: June 19, 1996
    Date of Patent: March 7, 2000
    Assignee: Instrumentarium Oy
    Inventor: Kai Karlsson
  • Patent number: 5747820
    Abstract: The invention relates to an infrared radiation source for a gas analyzer and a method for generating infrared radiation. The infrared radiation source comprises a body (6), thermal insulation material (5) adapted inside the body (6), a radiant element (1) fitted inside the insulation material (5), elements (2, 3) for feeding electric energy to said radiant element (1), and a channel (7) formed in said body (6) and said thermal insulation material (5) in order to pass the radiation generated by said radiant element (1) to the gas under measurement. According to the invention, at least the thermal insulation material (5) adapted in close proximity to the radiant element (1) has a low thermal conductivity and the emissivity of the radiant surface (11) adapted in close proximity to the radiant element (1) is greater than 0.5 at the operating temperature of the source.
    Type: Grant
    Filed: July 7, 1995
    Date of Patent: May 5, 1998
    Assignee: InstrumenTarium Corp.
    Inventors: Kai Karlsson, Timo Merilainen, Kurt Weckstrom, Seppo Poikolainen
  • Patent number: 5608212
    Abstract: A method for calibrating a gas analyzer (1). A gas analyzer is calibrated by measuring the zero level of the analyzer (1). The level of the analyzer is measured, after a preceding reset, whenever a temperature variation (.DELTA.T) of an infrared sensor (14) included in the analyzer (1) or of a component thermally connected in a highly conductive manner thereto exceeds a predetermined threshold value (A), or the temperature variation rate (D) of the infrared sensor (14) of the analyzer (1) or of a component thermally connected in a highly conductive manner thereto exceeds a predetermined limit valve.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: March 4, 1997
    Assignee: Instrumentarium Corp.
    Inventors: Timo Merilainen, Borje Rantala, Kurt Weckstrom, Kai Karlsson